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1. Renseignements Personnels
1.a. Etat Civil

Deheuvels, Paul, René, Louis

néle 11 mars 1948 a Istanbul, Turquie
nationalité francaise’

marié?, 4 enfants?

1.b. Adresses

Professionnelle:
LS.T.A,, Tour 15-25, 2™ étage, B213, Université Pierre et Marie Curie (Paris VI)
4 place Jussieu, 75252 Paris Cedex 15
Tél.:Sec. 0144278562Tel:0144273351Fax:0144 273342
Privée:
7 avenue du Chateau, 92340 Bourg-la-Reine
Téléphone & Fax: Tel. Privé: 0146 612061 FaxPrivé: 0146616685

Courrier électronique:
paul.deheuvels@upmc.fr, paul.deheuvels@sfr.fr

2. Carriere
2.a. Diplomes & Etudes

Ecole Normale Supérieure (rue d'Ulm), 1967-70*
Maitrise de Mathématiques, Université Paris VI, 1968
DEA de Mathématiques, Université Paris VI, 1969
Agrégation de Mathématiques, 1969

These d'Etat, Université Paris VI, 1974

2.b. Emplois & Fonctions universitaires

Assistant agrégé, Université Paris VI, 1969-72
Maitre-Assistant, Université Paris VI, 1972-74

! Par filiation (pére: René Deheuvels, professeur émérite a I'Université Pierre et Marie Curie, mére: France
Lagarde, sans profession)

2 AJoéle Cormerais, le 4 mars 1971.

3 Fleur Deheuvels, ancienne éléve de I'Ecole Polytechnique, mariée, 4 enfants, Sophie Deheuvels, ancienne éléve
de I'ESTP, mariée, 3 enfants, Camille Deheuvels, sage-femme diplémée, mariée, 2 enfants, Aurore Deheuvels,
opticienne diplomée, célibataire.

* Aprés 2 années de préparation, Math. Sup. (1965-66), Math. Spé. (1966-67) au Lycée Louis-le-Grand, Paris, requ
a I'Ecole Polytechnique en 1967 (démission).



Maitre de Conférences (ancien régime)*, Université Pierre et Marie Curie, Paris VI, 1974-
1978¢

Professeur, Université Pierre et Marie Curie, Paris VI
2¢me classe, 1978-1984, 1¢ classe, 1985-1995,
classe exceptionnelle, 1¢"échelon, 1995-1999, 2™ échelon, 1999-

Directeur du Laboratoire de Statistique Théorique et Appliquée (L.S.T.A)),
Université Pierre et Marie Curie, Paris VI, 1982-

Responsable du DEA de Statistique (puis Master M2, Spécialité Statistique) de
I'Université Pierre et Marie Curie, Paris VI, 1980-

Président de la Commission des Théses de Mathématiques, Université Pierre et Marie
Curie, Paris VI, 1990-1997

2.c. Emplois & Fonctions industrielles

Conseiller de la Direction de la Compagnie Francaise des Pétroles - TOTAL, 1974-1994
Conseiller de la Direction — ELF - 1978-1992
Conseiller du groupe SANOFI - Recherche & Dévelopement — 1980-2010

2.d Congés sabbatiques & Invitations

Visiting Professor, Columbia University, New York, Semestre de printemps 1989
Visiting Professor, Columbia University, New York, Semestre de printemps 1999
Visiting Professor University of Rotterdam, 1993

Visiting Professor KUL (Katholieke Universiteit te Leuven), 1987

Professeur Invité, Universita degli Studi di Torino, 1985-1995

2.e. Sociétés savantes

Membre de I'Académie des Sciences, 2000- (Correspondant, 1996-2000)

Membre correspondant étranger de la "Real Academia de Ciencias Exactas, Fisicas y
Naturales" (Académie Royale d'Espagne), 2002-

Fellow of the Institute of Mathematical Statistics [IMS], 1985-

Membre de I'Institut International de la Statistique [IIS-ISI, International Statistical
Institute], 1978-

Membre de la Société Bernoulli, 1978-

2.f. Récompenses Académiques

Prix Gegner, Académie des Sciences, 1988
Prix Pierre-Simon de Laplace, Société de Statistique de France, 2007

5 Corps assimilé aux professeurs d'université de 2°™ classe, en 1978.

¢ Service militaire de juillet 1975 a juin 1976, comme sous-lieutenant (statut IMO) d'artillerie. Affecté au 45
Régiment de Transmissions (Montélimar), avant d'étre affecté au S.R.O.A.T., Service de Recherche
Opérationnelle de 'Armée de Terre, de septembre 1975 a juin 1976. Lieutenant de Réserve.



2.g. Autres Activités d'Intérét Collectif
2.g.a. Fonctions éditoriales (liste partielle)

Directeur de la collection "Mathématiques", Presses Universitaires de France, 1980-

2000

Editeur Associé de "Mathematical Methods in Statistics", 1991-2001

Editeur Associé de "Statistics and Probability Letters", 1994-2010

Membre du Comité Editorial des "Comptes Rendus de I'Académie des Sciences",
1995-

Editeur Associé de "Extremes", 1997-

Editeur Associé de "Statistical Inference for Stochastic Processes", 1997-

Editeur Associé de "M.C.A.P." 2002-

2.g.b. Organisation de congres
Co-organisateur du congres "Stochastics", Oberwolfach, 1993
2.g.c. Activités d'expertise éditoriale (liste partielle)

Annals of Probability, Annals of Statistics, Probability Theory and Related Fields,
Annales de I'Institut Henri Poincaré, Journal of Applied Probability, Advances in
Applied Probability, Stochastic Processes and their Applications, Journal of
Multivariate Analysis, Journal of Statistical Planning and Inference, Statistics and
Probability Letters, Statistics and Decisions, Scandinavian Actuarial Journal,
Comptes Rendus de I'Académie des Sciences, Statistics, ESAIM, Metrika.

2.g.d. Autres responsabilités administratives, Jurys & Concours

Examinateur (oral de mathématiques) du Concours de I'Ecole Spéciale Militaire de
Saint-Cyr-Coétquidan (1972-82).

Examinateur (écrit de mathématiques) de I'Ecole de I'Air de Salon de Provence
(1980-1993).

Examinateur (écrit de mathématiques) du Concours Commun, Mines-Ponts (1976-
1994).

Membre du Conseil de 'UER de Mathématiques - UFR 920 de Mathématiques, puis
UFR 929, Université Paris VI, 1974-1997, 1997-2009.

Membre du CNU, Section 23.4 & 26, 1987-1995, 2003-

Membre du Comité National de la Recherche Scientifique, Section 03, 1987-1991

Directeur de I'.S.U.P. [Institut de Statistique de I'Université de Paris], 1981-82.

Directeur de I'ESILV - Ecole Supérieure d'Ingénieurs Léonard de Vinci, 2009-2010.

Membre du Jury de I'Agrégation de Mathématiques, 1971, 1986, 1987



2.h. Anciens éléves de theése (liste partielle)

Adrian Raftery, full professor, University of Seattle, Washington (Membre de la National
Academy of Sciences des USA depuis 2009).

Michel Broniatowski, professeur, Université Pierre et Marie Curie (Paris VI)

George Haiman, professeur, Université de Lille

Armelle Guillou, professeur, Université Louis Pasteur (Strasbourg)

Jean Diebolt, directeur de recherches au C.N.R.S.

Jean-Noél Bacro, professeur, Université de Montpellier

Zhan Shi, professeur, Université Pierre et Marice Curie (Paris VI)

Alexandre Berred, professeur, Université du Havre

Marie-France Kratz, professeur, ESSEC

Charles El Nouty, professeur, Université Paris XIII

Philippe Berthet, professeur, Université Paul Sabatier, Toulouse

Margarida Brito, professeur, Université de Porto

Gane Samb Lo, professeur, Université de Saint Louis (Sénégal)

Abdelhakim Necir, professeur, Université de Biskra (Algérie)

Abdelouahid Imlahi, professeur, Université de Tanger (Maroc)

Gratiane Ennadifi, maitre de conférences, Université de Lyon |l

Sergio Alvarez-Andrade, maitre de conférences, Université de Compiégne

Zohra Cherfi, maitre de conférences, Université de Compiegne

Ludovic Menneteau, maitre de conférences, Université de Montpellier

Alain Lucas, maitre de conférences, IUT de Caen

Myriam Maumy, maitre de conférences, Université Louis Pasteur (Strasbourg)

Jean-Renaud Pycke, maitre de conférences, Université d'Evry

Davit Varron, maitre de conférences, Université de Besancon

Pierre Ribereau, maitre de conférences, Université de Montpellier

Vivian Viallon, maitre de conférences, Université de Lyon 1

Salim Bouzebda, maitre de conférences, Université de Compiegne

Julien Cornebise, Research Associate, University College, London

Mamadou Kone, maitre de conferences, CHU de Caen

Sarah Ouadah, maitre de conférences, AGRO Paris-Tech

3. Publications Principales.
3.a. Articles de recherche publiés

[1] Sur la convergence de sommes de minimums de variables aléatoires (1973). C R.
Acad. Sci. Paris Ser. A-B 276 309-312 [MR 48 #5156a]

[2] Sur la convergence de certaines suites de variables aléatoires (1973). C. R. Acad. Sci.
ParisSer. A-B 276 641-644 [MR 48 #5156b]

[3] Sur une application de la théorie des processus de renouvellement a I'estimation de la
densité d'une variable aléatoire (1973). C R Acad. Sci. Paris Ser. A-B 276 943-946 [MR
48 #12710]



[4] Sur une famille d'estimateurs de la densité d'une variable aléatoire (1973). C R Acad.
Sci. ParisSer. A-B 276 1013-1015 [MR 48 #12711]

[5] Sur l'estimation séquentielle de la densité (1973). C R. Acad. Sci. Paris Ser. A-B 276
1119-1121 [MR 48 #12712]

[6] Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle (1974).
Annales de l'Institut Henri Poincaré Ser. B 10, .1, 89-114 [MR 50 #11404]

[7] Majoration et minoration presque sire des extrémums de suites de variables aléatoires
indépendantes de méme loi (1974). C R. Acad. Sci. Paris Ser.A 278 513-516 [MR 50
#3317]

[8] Majoration et minoration presque siire des extrema de processus Gaussiens (1974). C
R. Acad. Sci. ParisSer. A 278 989-992 [MR 51 #1930]

[9] Conditions nécessaires et suffisantes de convergence ponctuelle presque stre et
uniforme presque stire des estimateurs de la densité (1974). C R. Acad. Sci. Paris Ser. A
278 1217-1220 [MR 49 #10032]

[10] Majoration et minoration presque sire optimale des éléments de la statistique
ordonnée d'un échantillon croissant de variables aléatoires indépendantes (1974).
Rendi Conti della Academia Nazionale dei Lincei 8, 56,1.5,707-719 [MR 52 #15625]

[11] Estimation non paramétrique de la densité par histogrammes généralisés (1977).
Publications de [llnstitut de Statistique de I'Université de Paris 22, f.1, 1-24 [MR
#81h:62071]

[12] Estimation non paramétrique de la densité par histogrammes généralisés (II) (1977).
Revue de Statistiqgue Appliquée 25, 1.3, 5-42 [MR 58 #18876]

[13] Caractérisation compléte des lois extrémes multivariées et de la convergence des
types extrémes (1978). Publications de [Institut de Statistique de [Université de Paris
23,1.3,1-36.

[14] Propriétés d'existence et propriétés topologiques des fonctions de dépendance
(1979). C. R Acad. Sci. Paris, Ser. A 288 217-220.

[15] Détermination compléte du comportement asymptotique en loi des valeurs
extrémes multivariées d'un échantillon de vecteurs aléatoires indépendants (1979). C.
R. Acad. Sci. Paris, Ser. A 288, f.3, 631-634 [MR #80c:60038]

[16] Détermination des lois limites jointes de I'ensemble des points extrémes d'un échan-
tillon multivarié (1979). C R. Acad. Sci. Paris, Ser. A 288 631-644 [MR #80c:60034]

[17] Estimation non paramétrique de la densité compte tenu d'informations sur le support
(1979). Revue de Statistique Appliquée 27, {3, 47-68 (avec P. Hominal) [MR
#81e:62040]

[18] Estimation séquentielle de la densité (1979). Dans: Contribuciones en Probabilidad y
Estadistica Matematica Enserianza de la Matematica y Analysis. 156-168, Grindley,
Granada, Espagne [MR #81h:62072]

[19] La fonction de dépendance empirique et ses propriétés, un test non paramétrique
d'indépendance (1979). Bulletin de ['Académie Royale de Belgique, Classe des
Sciences (5) 65, .6, 274-292 [MR #81h:62073]

[20] Non-parametric tests of independence (1980). Dans: Statistigue Non Paramétrique
Asymptotique (J. P. Raoult, Edit.) 95-107, Lecture Notes in Mathematics 821, Springer
Verlag, Berlin [MR #82c:62061]



[21] Estimation automatique de la densité (1980). Revue de Statistique Appliquée 28, .1,
23-55 (avec P. Hominal) [MR #82j:62026]

[22] Some applications of dependence functions: nonparametric estimates of extreme
value distributions and a Kiefer-type bound for the uniform test of independence
(1980). Dans: Nonparametric Statistical Inference. Colloquia Math. Soc. Jdnos Bolyai
32, 183-201, North Holland, Amsterdam [MR #85g:62064]

[23] The decomposition of infinite order and extreme multivariate distributions (1980).
Dans: Asymptotic Theory of Statistical Tests and Estimation. (I. M. Chakravarti, Edit.),
259-286, Academic Press, New York [MR #82j:62032]

[24] A Kolmogorov-Smirnov test for independence (1981). Rewvue Roumaine de
Mathématiques Pures et Appliguées 26, 1.2, 213-226 [MR #83¢:62064]

[25] La prévision des séries économiques, une technique subjective (1981). Archives de
I1SMEA. 34,14,729-748.

[26] An asymptotic decomposition for multivariate distribution-free tests of
independence (1981). Journal of Multivariate Analysis 11 102-113 [MR #82g:62067]
[27] Multivariate tests of independence (1981). Dans: Analytical Methods in Probability
Theory. (D. Dugué, E. Lukacs et V. K. Rohatgi, Edit.), 102-113, Lecture Notes in

Mathematics 861, Springer Verlag, Berlin [MR #83g:62074]

[28] A non-parametric test for independence (1981). Publications de [lnstitut de
Statistique de ['Université de Paris 26, 1.2, 29-50.

[29] The strong approximation of extremal processes (1981). Zeitschrift fiir
Wahrscheinlichkeitstheorie und Verwandte Gebiete 58 1-6.

[30] Univariate extreme values - Theory and applications (1981). Proceedings of the 43¢
Session of the International Statistical Institute. 49, .2, 837-858.

[31] Strong limiting bounds for maximal uniform spacings (1982). Annals of Probability 10
1058-1065.

[32] Spacings, record times and extremal processes (1982). Dans: Exchangeability in
Probability and Statistics (G. Koch et F. Spizzichino, Edit.), North Holland, Amsterdam,
223-243.

[33] A construction of extremal processes (1982). Dans: Probability and Statistical
Inference (W. Grossmann, G. C. Pflug et W. Wertz, Edit.), 53-58, Reidel, Dordrecht.

[34] Sur des tests d'ajustement indépendants des parametres (1982). Dans: Actas, //
Cologuio de Estatistica - A Estatistica nos Processos Estocasticos, Departamente de
Matematica, Universidade de Coimbra, 7-18.

[35] On record times associated with 4-th extremes (1982). Proceedings of the 3
Pannonian Symposium on Mathematical Statistics (J. Mogyorddi, I. Vincze et W. Wertz,
Edit.), Akadémiai Kiadd, Budapest.

[36] Invariance of Wiener processes and Brownian bridges by integral transforms and
applications (1982). Stochastic Processes and their Applications. 13, f.3,311-318.

[37] L'encadrement asymptotique des éléments de la série d'Engel d'un nombre réel
(1982). C. R Acad. Sci. Paris, Ser. A 295 21-24.

[38] Point processes and multivariate extreme values (1983). Journal of Multivariate
Analysis. 13 257-272.



[39] The complete characterization of the upper and lower class of the record and inter-
record times of an i.i.d. sequence (1983). Zejtschrift fiir Wahrscheinlichkeitstheorie und
Verwandte Gebiete. 62, 1-6.

[40] The strong approximation of extremal processes (II) (1983). Zeitschrift fir
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 62, 7-15.

[41] Upper bounds for 4th maximal spacings (1983). Zeitschrift  fir
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 62, 465-474.

[42] Strong bounds for multidimensional spacings (1983). Zeitschrift  fir
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 64, 411-424.

[43] Indépendance multivariée partielle et inégalités de Fréchet (1983). Dans: Studles in
Probabilities and Related Topics (Papers in Honour of Octav lonicescu on his 90th
Birthday) (M. Demetrescu et M. losifescu, Edit.), 145-155, Nagard, Bucarest.

[44] Strong bounds for the maximal 4-spacing when & < clog n (1984). ). Zeitschrift fiir
Wahrscheinlichkeitstheorie und Verwandte Gebiete 66, 315-334 (avec L. Devroye).
[45] Strong limit theorems for maximal spacings from a general univariate distribution

(1984). Annals of Probability 12, 1181--1193.
[46] How to analyze bioequivalence studies - The right use of confidence intervals (1984).
Journal of Organizational Behavior and Statistics 1,f.1, 1-15.

[47] Asymptotic results for the pseudo-prime sequence generated by Hawkins's random
sieve: twin primes and Riemann's hypothesis (1984). Dans: Proceedings of the /th
Conference in Probability Theory, Brasov (M. losifescu, Edit.), 109-115, Editura
Academiei, Bucarest.

[48] Probabilistic aspects of multivariate extremes (1984). Dans: Statistical Extremes and
Applications (J. Tiago de Oliveira, Edit.), 117-130, D. Reidel, Dordrecht.

[49] Strong approximations of records and record times (1984). Dans: Statistical Extremes
and Applications (). Tiago de Oliveira, Edit.), 491-496, D. Reidel, Dordrecht.

[50] Strong approximation in extreme values, theory and applications (1984). Dans: Limit
Theorems in Probability and Statistics (P. Révész, Edit.) Vol. 1, 369-404, Colloquia Math
Janos Bolyai 36, North Holland, Amsterdam.

[51] The characterization of distributions by order statistics and record values - A unified
approach (1984). Journal of Applied Probability. 21 326-334 (Corr. (1985). 22 997).
[52] Point processes and multivariateextreme values (Il) (1985). Dans: Multivariate Analysis

VI(P. R. Krishnaiah, Edit.), 145-164, North Holland, Amsterdam.

[53] On the Erd&s-Rényi theorem for random fields and sequences and its relationships
with the theory of runs and spacings (1985). Zeitschrift fir Wahrscheinlichkeitstheorie
und Verwandte Gebiete. 70,91-115.

[54] Lois de type Pareto et applications a la théorie mathématique du risque (1985).
Rend. Sem. Mat. Univers. Politecn. Torino. 43,1.1, 25-41.

[55] Kernel estimates of the tail index of a distribution (1985). Annals of Statistics. 13
1050-1077 (avec S. Csorgd et D. M. Mason).

[56] Spacings and applications (1985). Dans: Probability and Statistical Decision Theory (F.
Konecny, J. Mogyorédi et W. Wertz, Edit.), Vol. A, 1-30, Reidel, Dordrecht.

[57] The limiting behavior of the maximal spacing generated by an i.i.d. sequence of
Gaussian random variables (1985). Journal of Applied Probability. 22, 816-827.



[58] Exact convergence rate in the limit theorems of Erdés-Rényi and Shepp (1986).
Annals of Probability. 14,209-223 (avec L. Devroye et . Lynch).

[59] Exact convergence rate of an Erd&s-Rényi strong law for moving quantiles (1986).

Journal of Applied Probability. 23, 355-369 (avec ). Steinebach).

[60] Strong laws for the k-th order statistic when & < clog n (1986). Probability Theory
and Related Fields. 72, 179-186.

[61] On the influence of the extreme values on the maximal spacing (1986). Annals of
Probability. 14, 194-208.

[62] A semigroup approach to Poisson approximation (1986). Annals of Probability. 14,
663-676 (avec D. Pfeifer).

[63] Simple random walk on the line in random environment (1986). Zeitschrift fiir
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 72, 215-230 (avec P. Révész).

[64] Operator semigroups and Poisson convergence in selected metrics (1986).
Semigroup Forum. 34,203-224 (avec D. Pfeifer).

[65] Many heads in a short block (1987). Dans: Mathematical Statistics and Probability
Theory (M. L. Puri, P. Révész et W. Wertz, Edit.), 53-67, D. Reidel, Dordrecht (avec P.
Erdés’, K. Grill et P. Révész).

[66] Weak laws for the increments of Wiener processes and Brownian bridges and
applications (1987). Dans: Mathematical Statistics and Probability Theory (M. L. Puri, P.
Révész et W. Wertz, Edit.), 69-87, D. Reidel, Dordrecht (avec P. Révész).

[67] Limit laws of the Erd&s-Rényi-Shepp type (1987). Annals of Probability. 15, 1363-
1386 (avec L. Devroye).

[68] Exact convergence rates in strong approximation laws for large increments of partial
sums (1987). Probability Theory and Related Fields. 76, 369-393 (avec]. Steinebach).
[69] Semigroups and Poisson Approximation (1987). Dans: New Perspectives in
Theoretical and Applied Statistics (M.Puri, J. Vilaplana et W. Wertz, Edit.) 439-448,

Wiley, New York (avec D. Pfeifer).

[70] Exact convergence rates in Erdés-Rényi-type theorems for renewal processes (1987).
Annales de l'Institut Henri Poincaré. 23, 195-207 (avec . N. Bacro et ]. Steinebach).

[71] An approximation of stopped sums with applications in queuing theory (1987).
Advances in Applied Probability. 19, 674-690 (avec M. Csérgé et L. Horvath).

[72] The asymptotic behavior of sums of exponential extreme values (1988). Bulletin des
Sciences Mathématiques. 112, 211-233 (avec D. M. Mason).

[73] Strong approximations of 4th records and 4-th record times by Wiener processes
(1988). Probability Theory and Related Fields. 77, 195-209.

[74] Limit laws for the modulus of continuity of the partial sum process and for the Shepp
statistic (1988). Stochastic Processes Appl. 29, 223-245 (avec . Steinebach).

[75] The almost sure behavior of maximal and minimal 4-spacings when 4, = O(log n)
(1988). Journal of Multivariate Analysis. 24, 155-176 (avec J. H. J. Einmahl, D. M. Mason
et F. Ruymgaart).

[76] Almost sure convergence of the Hill estimator (1988). Mathematical Proceedings of
the Cambridlge Philosophical Society. 104, 371--384 (avec E. Haeusler et D. M. Mason).

" Cet article me vaut I'insigne honneur d'étre co-auteur direct du célebre mathématicien hongrois Pal Erdés, et
d'avoir ainsi un « nombre d’Erdés » égal a 1.



[77] Poisson approximations in selected metrics by coupling and semigroup methods with
applications (1988). Journal of Statistical Planning and Inference. 20, 1-22 (avec A. Karr,
D. Pfeifer et R. Serfling).

[78] Poisson approximations of multinomial distributions and point processes (1988).
Journal of Multivariate Analysis. 25, 65-89 (avec D. Pfeifer).

[79] A new semigroup technique in Poisson approximation (1988). Semjgroup Forum.
201, 1-13 (avec D. Pfeifer et M. L. Puri).

[80] On the relationship between Uspensky's theorem and Poisson approximations
(1988). Annals of the Institute of Mathematical Statistics. 40, 671-681 (avec D. Pfeifer).

[81] Strong laws for the k-th order statistic when & < clog n (Il) (1989). Dans: Extreme
Value Theory (J. Husler et R. Reiss, Edit.), 21-35, Lecture Notes in Statistics 51,
Springer-Verlag, Berlin.

[82] A Bahadur-Kiefer-type two sample statistic with applications to tests of goodness of
fit (1989). Dans: Limit Theorems in Probability and Statistics (P. Révész, Edit.), Colloquia
Mathematica Janos Bolyai 57, 157-172 (avec D. M. Mason).

[83] Sharp rates for the increments of renewal processes (1989). Annals of Probability. 17,
700-722 (avec . Steinebach).

[84] Asymptotic expansions of sums of non identically distributed binomial random
variables (1989). Journal of Multivariate Analysis. 25, 65-89 (avec M. L. Puri et S.
Ralescu).

[85] On the relationship between stability of the extreme order statistics and convergence
of the maximum likelihood kernel density estimate (1989). Annals of Statistics. 17,
1070-1086 (avec M. Broniatowski et L. Devroye).

[86] On the non-parametric estimation of the bivariate extreme value distributions (1989).
Statistics and Probability Letters. 9, 241-251 (avec]. Tiago de Oliveira).
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4. Synthése des Travaux de Recherche Principaux
4.a. Estimation Fonctionnelle

Soit une suite d'observations X, X,,..., composée de répliques aléatoires indépendantes, de
méme loi de probabilit¢, d'une variable générique X . En notant F(x) =P(X < x), la fonction
de répartition de X , nous nous plagons sous I'hypothése d'existence d'une densité (au sens de
Lebesgue)

f(x) :%F(x) pourxeJ c R,

ou J= ]a',b'[ désigne un intervalle ouvert non vide deRR. Par la suite, nous nous limiterons
essentiellement au cas ou (il existe une version de) f (qui est) continue surJ, et désignerons

par | =[a,b] = J unintervalle tel que —o<a'<a<b<b'<w.

Une partie importante de mes travaux concerne |'estimation de f a partir de l'échantillon de
taille n>1 de X composé des n premieres observations X,,..., X, de la suite. Il s'agit ici

d'estimation fonctionnelle non-paramétrique, du fait qu'on construit des statistiques :
f.()=f (X X,,.... X,),

dont l'intérét est de converger vers la densité inconnue f (X) lorsque la taille nde I'échantillon
tend vers ['infini, et ceci, sous des hypotheéses tres générales sur f (comme celle, par exemple,
consistant a supposer que f est continue), et ne requiérant pas d'admettre a priori que f est
donnée par un modéle paramétriqgue du type f(x)= f(x;0), ou 8 eR", et ou la forme

fonctionnelle f(.;.) est connue.

L'une des statistiques non-paramétrique les plus utilisées pour estimer f est I'estimateur a
noyau (Rosenblatt (1956), Parzen (1962)), défini, a partir d'un noyau K(+), et d'un paramétre
de lissage h,, par

1 X—X.
f(X)=— > K ' our xeR.
”()nhn;(hnjp S

15



- Le noyau K(s) est, par hypothese, une fonction réelle de variable réelle, vérifiant des
propriétés minimales de régularité (on supposera typiquement que K(+) est a variation
bornée, et s'annulant en dehors d'une partie compacte de R ). On suppose également que

K(s) vérifie I'égalité
JZ K (t)dt =1,
cette derniére condition impliquant que
ji f (t)dt=1.
La classe des estimateurs a noyaux comprend, comme cas particulier I'Aistogramme, obtenu
lorsque K(.) est défini par

“O g

- Le paramétre de lissage h, >0 est a choisir de maniére que

h, >0 et nh, —> o, lorsque n — oo.

Ces conditions sont nécessaires et suffisantes pour la convergence en norme £;de f vers f

lorsque n — oo, pour tout choix de f, ceci signifiant que, pour tout intervalle compact
I :[a,b]c J c R,
et pour toute densité de probabilité f,on a, lorsque n— oo,
[ 11,00=f(x)x —>o.
Par la suite, nous supposerons, plus spécifiquement que

h,40 et nh, Too, lorsque nT .

Mes travaux sur ce type d'estimateur ont débuté en 1972-74, et ont d'abord cherché a
résoudre le probleme (alors ouvert) de caractériser la convergence presque stre uniforme,
ainsi que la convergence presque stre ponctuelle de f, vers f lorsque n— oo. Ces deux

questions recueillaient un intérét constant de la part de nombreux chercheurs depuis le debut
des années 1960, et on ne disposait alors que de résultats trés partiels. J'ai résolu ce probléme
dans [9], en montrant que, indépendamment de K, il est nécessaire et suffisant pour la

convergence presque sire [p.s.] de f  vers f lorsque lorsque n— oo, Vf continue, que

(en notant x, € R un point fixé a l'avance),
nh,[loglog n —» oo,

pour la convergence (ponctuelle) p.s. de £(x) vers fx) lorsque n — «, et
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nh,llogn — oo,
pour la convergence p.s., uniforme sur tout compact de £, vers £ lorsque lorsque 7 — .

Ces recherches se sont poursuivies dans une série d'articles, portant, entre autres, sur le choix
de A, ([11], [12], [17], [21]), les estimateurs séquentiels et apparentés ([3], [4], [5], [18]), et,
plus récemment, pour I'obtention de propriétés du deuxieme ordre, consistant a déterminer
les vitesses de convergence exactes de £, vers £ Ces derniers résultats ont été basés sur la
technique nouvelle des /ois /imites fonctionnelles locales pour le processus empirique,
technique que j'ai développée dans une série d'articles a partir de 1990. Ces lois seront
discutées plus en détail au §5. Les Jois /imites fonctionnelles locales sont inspirées de la loi
fonctionnelle du logarithme itéré démontrée par Strassen (1964) pour le processus de
Wiener, et sont exposées, notamment dans mes articles [91], [94], [96], [107], [108], [117],
[120], [125]. J'y établis, entre autres, les théorémes suivants, cités dans (A)-(B) ci-dessous. On
suppose que a <b sont des constantes réelles fixées.

(A) Pourtout X, €R fixé, sous I'hypothése que f est continue en X, et en supposant que
h 40, nh T et nh /loglogn— oo lorsque n — oo,
on, presque sirement,

liminf (ﬁ:‘ogn] {i( f (x)-Ef (xo))} = ( f ()] Kz(t)dt)m p.s.

Ici, "+ " signifie que la formule est vraie aussi bien dans le cas "+" que dans le cas

Ce résultat a été généralisé dans [125] au cas d'une estimation de la densité pour des /ois de
survie. On consideére alors le cas ou les observations sont des données censurées, traitées par
la méthode de Kaplan-Meier. Ce probléme sera discuté plus loin dans ce méme paragraphe.
La loi limite présentée dans ce dernier article [125] permet de traiter le cas ou la densité f est
discontinue enX,, sous réserve qu'elle ait des limites a gauche et a droite en X,

(éventuellement distinctes). La version multivariée de ce théoreme, correspondant a des
observations X,,..., X, a valeurs dans R” pour p>1 quelconque, a été obtenue dans [117].

Le comportement de f dansle cas ou nh, /loglog n — ¢ < a été également traité dans les
articles [91],[120],[126] et [138].

(B) Sous I'hypotheése que fest continue sur un voisinage ouvert de [a,b], et que, pour une
constante (éventuellement infinie) ¢ >0,

h, 40, nh, T, nh, /log n — o, (log(1/h,))/loglog n — ¢ [0, +] lorsque n T co,
alors, on a (cf. [108], [138])

1/2
. nh, B
“Tjjp 2{log(1/h, ) +loglog n}} :sligb{i( f 0O B, (X))}
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1/2
:(sup f(x)r Kz(t)dtj p.s.
a<x<b -

et
1/2

. nh, B
fiminf 2{log (1/h, ) +loglog n} fsligb{i(f“ ()-Ef, (X))}

1/2
:(i sup f(x)ro Kz(t)dt] p.s.
C+1a<x<h -

Récemment (cf. [141], [144]) j'ai montré que ces propriétés demeurent valides lorsqu'on
remplace [a,b] par un intervalle non borné au voisinage duquel 7est uniformément continue,

le noyau K pouvant, quant a lui, étre une fonction a variation bornée quelconque surR, au
support non nécessairement borné. Ces derniers travaux fournissent des extensions, ne
pouvant plus étre améliorées, de résultats anciens de Hall (1991) (ces derniers, pour
permettre |'utilisation de noyaux a supports non bornés, établissaient des versions sous-
optimales de ces théorémes, imposant, notamment I'existence de constantes 0<c, <c, <1,

telles que n™® <h, <n % pour les grandes valeurs de 7.

Les /ois limites fonctionnelles locales qui m'ont permis d'établir ces résultats seront exposées
plus en détail au §5 ci-dessous.

Plusieurs de mes travaux, de 1973 a 1979, ont concerné les estimateurs séquentiels de la
densité, c'est a dire, pouvant étre calculés sous la forme récursive

f.(x)= Rn(?n_l(x),xn).

En particulier, j'ai établi, dans [5], I'optimalité asymptotique des estimateurs de la forme :

ﬂ(x){ihﬁ(hﬁ)] iH(hi)K[X;Xij,

n

pour le choix de H(u)=1/u (estimateur de Yamato-Wolverton-Wagner), dans le cas du
critere d'optimalité du IMSE (Integrated Mean Square Error), et de H (u) =1, pour le critere
d'optimalité de la variance minimale asymptotique (voir aussi [4] et [18]).

J'ai établi dans [85] (en collaboration avec L. Devroye et M. Broniatowski) que le choix de h,

fourni par la méthode de /a validation croisée donnait un estimateur de la densité convergeant
dans le seul cas ou les extrémes de I'échantillon étaient stables [une suite aléatoire Z est dite

stable s'il existe des constantes @, telles que

P
Z —a —0
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(convergence en probabilité vers 0 lorsque n— o) ]. Ce résultat, qui lie le comportement
limite d'estimateurs fonctionnels aux proprietés asymptotiques des extrémes et des
espacements, s'inscrit dans une logique conceptuelle expliquant les raisons qui m'ont poussé a
traiter des questions en apparence éloignées les unes des autres. Leur impact a été important
dans la mesure ou la méthode de la validation croisée était, a 'époque de ces travaux, utilisée
de plus en plus par les praticiens, sur des bases empiriques non fondées, et sans qu'on sache
pour autant caractériser les situations ou elle était inadaptée.

Depuis 1992, jai entrepris I'étude d'estimateurs de la densité pour des données de survie
censurées (qui permet d'estimer le taux de mortalité, appellé aussi taux de panne ou taux de
hasard suivant les applications). Le modeéle de censure aléatoire considéré est le suivant. Etant
donné une suite de durées de vie X,,..., X, indépendantes de méme loi, et une suite de

temps de censureY,,...,Y, indépendants de méme loi, on n'observe, pour i=1,...,n, que les

valeursde Z, =min{X,,Y;} et de l'indicatrice &, =1, -, permettant de savoir si 'observation

Xi<Y;}
X, est censurée ou non par la variable Y,. A titre d'exemple, si on étudie le temps de survie

de patients hospitalisés a la suite d'accidents graves, la censure correspond au cas ou

I'observation se termine a la fin de I'hospitatisation, et lorsque le patient est alors encore en
vie. Dans ce cas, pour le i*™ patient, X, désigne la durée de vie du patient (non observée), et

Y,, sa durée d'hospitalisation (observée).

Le probleme principal a résoudre est celui d'estimer la loi de probabilité de survie
1-F(x) = IP’(Xi > X), la densité de survie f(X)=TF'(X), et le taux de mortalité (ou taux de

panne) f (X)/(l—]F(X)), indépendamment de la loi commune inconnue G(y) = ]P’(Yi < y) des

temps de censure. On raisonne en général en supposant fet G continues.

L'estimateur le plus classique de F(x), di a Kaplan et Meier (1958), est défini par
S

. 1
F()=1- ] [1_Nn(zi)}'

i1<i<n,Z;<x

ou g =1, et

N,(2) = Zl{zizz}'
i=1

On construit & partir de . un estimateur 4 noyaude f en posant

=] h;lK(X—‘t]dF:(t),
S hn
ou K(.) est un noyau du méme type que ceux qui sont utilisés pour I'estimation de la densité
"classique”, comme dans la définition de f, donnée plus haut (au début de ce méme §1). On
notera d'ailleurs que, dans le cas d'observations non censurées, correspondant a des temps de
censure infinis Y, =...=Y, =, on a, presque sirement, F. =F et f =f , ou F, désigne la

fonction de répartition empirique de X,,..., X, , définie par
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1 n
F,(x) =Hzl{xisx}-
i=1

De ce fait, les résultats de convergence obtenus pour les données censurées contiennent
comme cas particuliers les propriétés analogues du cas classique non censuré.

Récemment, j'ai pu établir dans [125] (en collaboration avec]. H. J. Einmahl), que si
h, 40, nh, T, nh_/loglog n — oo, lorsque n T o,
alors, pour tout X, € R tel que 1-G(X,) #0,

- ah 12 ) . ) o 12
nr:wjgp(m] {i(fn(xo)—Efn(xo))}:(mj_wK(t)dtj D.S.

ol
Ef(x,)= j h‘lK[ " ]dF(t)

Comme mentionné plus haut, ces résultats couvrent également le cas des estimateurs de la

n

densité usuels, dans la mesure ou f (x)=f (X) VX, lorsque G(x)=1 VX, choix qui
correspond a des données non censurées. La version uniforme de ce résultat,décrivant le
comportement de f,'(x) lorsque x &[a,b] varie sur un intervalle non réduit a un point, est la

suivante (cf. [138]).

-- Sous I'hypotheése que f est continue sur un voisinage ouvert de [a,b], avec G(b) <1, et

supposant que

h, 40, nh, T, nh, /log n — o, (log(1/h,))/loglog n —c €[0,0], lorsque n T e,

ona
h 1/2
. N * .
limsu h st 1200 B £ (x
n%p{z{log(llhn)ﬂoglog n}} {agxfb ( S O)-Ef( ))}
=| < sup f(x) Iw K2(t)dt " 0
asxsh 1—G(X) | 7= S,
et

1/2
o nh « -
I f . +( f -Ef
e {Z{Iog(llhn)Jrloglog n}} {as<ux£)b ( () "(X))}

_|_© f(X) 12
{C‘Fl{as:)j«bl G( )}I K (t)dt] p.s.,

Dans [110], j'ai également construit des tests d'homogénéité basés sur plusieurs échantillons
censurés, et établi les propriétés en permettant I'application pratique. Ces tests permettent de
comparer entre elles les distributions de survie de chacun des groupes, indépendamment des
lois des temps de censure. lls sont aujourd'hui régulierement utilisés sur des ensembles de
données biologiques et médicales, afin de vérifier si ces derniers peuvent étre agrégés pour
constituer des échantillons plus importants, permettant des estimations plus précises des
parameétres d'intérét.
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L'étude des estimateurs fonctionnels non paramétriques m'a amené a faire des recherches
dans plusieurs domaines connexes: les valeurs extrémes, les processus empiriques, les
approximations fortes et les espacements. De maniére un peu inattendue, ces domaines se
trouvent étre inextricablement liés sur le plan méthodologique. Ce fait, déja mentionné en
liaison avec [85], sera illustré plus loin par d'autres exemples.

4.b. Valeurs extrémes et lois multivariées.
4.b.a. Lois fortes pour les statistiques d'ordre.

Soient X, <..< X, les statistiques dordre, obtenues en rangeant par ordre croissant les
n>1 premieres observations d'une suite X,,..., X, de variables aléatoires indépendantes de

méme loi. Plusieurs de mes travaux ont décrit le comportement limite de telles statistiques
d'ordre, ou concernent I'étude de processus aléatoires qui leur sont liés.

En particulier, mes premiers travaux de recherche ont été consacrés a I'étude des trajectoires
du premier temps de passage t, =inf {n >1: X >t} , a un niveau fdonné de la suite des

maxima partiels {Xn’n n 21} de X,, X,,..., (on remarquera que le maximum des n premiéres
observations est X, =max{X,,..,X,}). Dans [1] et [2], jai établi la propriété¢ que le

processus {Z’t o<t < oo} était a accroissements indépendants.

En faisant usage de ce résultat, j'ai pu établir, dans [1], en 1971, le théoréme limite suivant, qui
résoud un probléme ouvert, posé par Grenander en 1965.

Si U,,U,,..., désigne une suite de variables aléatoires indépendantes de méme loi uniforme

sur (0,1), alors

IimLZmin{Ul,...,Un} =1 p.s.

n—>= |og N 43
J'ai ensuite généralisé ces résultats au processus ) = inf {n 2k X an Zt}, des premiers
temps de passage a un niveau tdonné, de la suite des  k*™ maxima partiels {ankﬂvn ‘nx k}
de X, X,,..., lorsque k>1 est un entier fixé. Ces travaux m'ont mené a l'obtention

d'encadrements presque sirs pour les processus de premier temps de passage
{z't(k) i—o<t< oo}. Par un procédé simple d'inversion, il est possible d'en déduire des résultats

analogues pour chacune des suites {X n k} correspondant a des valeurs fixées de

n-k+1,n
k=12,... Cependant, cette derniére partie de mes recherches fut rendue partiellement

caduque par des résultats de Kiefer (1972) et Robbins et Siegmund (1972) pour =1, puis par
ceux de Shorack et Wellner (1978), pour k >1 fixé. Ces derniers auteurs ont, en effet, obtenu,
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par des techniques différentes, des conditions nécessaires et suffisantes portant sur une suite
{c, :n>1}, pour que

P(X >c, i5.)=0 (resp.1), et P(X

n-k+i,n =

rioin SC, 15.)=0 (resp. ).
Ici 'abréviation {A, i.s.} signifie que la suite d'événements A, a lieu « infiniment souvent ». |l
est possible de montrer (loi du 0 ou 1) que, pour des événements A tels ceux qui sont

considérés ici, P( A, i.s.) ne peut prendre que la valeur O ou 1.

Dans le but d'obtenir des caractérisations plus puissantes que celles qui avaient déja été
obtenues, je me suis alors attaqué au probleme, plus complexe, de I'encadrement presque str

de {XH an-n Zl} lorsque {k,:n>1} est une suite monotone d'entiers, non nécessairement

constante, et vérifiant la condition Nk, — 0 lorsque n — 0. J'ai pu résoudre intégralement
ce probléme en montrant dans [60] et [81] que, sous réserve de conditions générales de
croissance et de régularité portant sur {k,:n>1}, les résultats suivants sont vérifiés. Je donne
ci-dessous la version correspondant a des variables aléatoires U,,U,,... indépendantes et de
loi uniforme sur (0,1). Cette restriction n'implique d'ailleurs aucune perte de généralité,
puisqu'on peut écrire lidentit¢ X; =Q(U, ), pour 1<i<n, ou la transformation de
quantiles C.) est définie par Q(t) =inf {X: F(x)> t} pour 0<#1, lorsque F(x) =P(X, <X).

Soient U, <..<U_ la statistique dordre de U,..,U , obtenue en rangeant ces

n!
observations par ordre croissant. Ici, U,,U,,..., comme ci-dessus, désigne une suite de

variables aléatoires indépendantes de méme loi uniforme sur (0,1). J'ai établi que :

1)Si (¢, —k,)/fk, — oo, alors
P(Ukn_n C, ) 0 (resp. =1)

& z (e—j exp(—c,) <o (resp. = ).

2)Si (c, —k,)/\k, = —oo,alors
IP’(Uann C, ) 0 (resp. =1)

2= Z [e—] exp(—c,) <o (resp. =).

Ces résultats ([60], [81]) sont optimaux au sens qu'ils ne pourraient étre éventuellement
améliorés qu'en affaiblissant les conditions de régularité et de monotonie supposés sur K. . lls
comprennent comme cas particuliers les critéres de Barndorff-Nielsen (1961), de Robbins et
Siegmund (1972), Kiefer (1972) et de Shorack et Wellner (1978). Enfin, ils présentent la
particularité de faire intervenir la méme série pour caractériser les encadrements inférieurs et
supérieurs.
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Mes recherches, portant sur les lois fortes de statistiques d'ordre (ou de quantiles) ont été
poursuivies dans plusieurs directions, comprenant I'étude des statistiques de queue, des
processus empiriques de queue, des statistiques locales, des processus empiriques locaux et
des records.

4.b.b. Records.

Les recordss classiques, pour une suite de variables aléatoires X,, X,,... sont définis comme
suit. Soit X, <..< X . la statistique d'ordre de X,,..., X

1n S obtenue en rangeant ces

n!t
observations par ordre croissant. Posons, par convention, X,, =—o0. Pour chaque valeur de

l'entier j>1,le j*™ temps de record (ou temps de 1-record) n® est la plus petite valeur de

= éme

I'entier n>1 pour laquelle on observe, pour la | fois consécutive, I'événement

Xnm > Xn1mas POur mvariantde 1an.La j*™ valeur de record(ou valeur de 1-record) R\

désigne alors la valeur prise par X | pour la valeur de ndonnée par n= n}l).

On définit, pour k>1 fixé, la suite n®™ =k <n® <...<n® <... des temps de k-records
P | 2 i /<

comme I'ensemble ordonné des indices n>k tels que X > X, enas etla j™ valeur de

n-k+1,n

k-recorck, R, comme la valeur obtenue en posant R¥ =X, pour la valeur de n

correspondanta n= ngk) .

L'étude de la suite double des temps et valeurs de -records {(nfk), Rfk) ): j= l} , qui se

ramene

a l'étude de la trajectoire du k®™ maximum de la suite {Xn—k+l,n n> k}, a fait I'objet de trés

nombreux travauy, initiés par les recherches originales de Chandler (1952) et Rényi (1970).
Lorsque les observations X, X,,..., sont indépendantes et de méme loi, de fonction de

répartition continue F(x)=P(X,<x), la loi des temps de records ne dépend pas de £

tandis que celle des valeurs de records ne dépend de F que par le biais d'un changement
d'échelle. Il est alors commode de se ramener au cas de la /o/ exponentielle standard] pour
laquelle F(x)=P(X,<x)=1-e™pour x>0. Nous supposerons par la suite que cette

derniére hypothése est satisfaite.

Dans la période 1981-1986, j'ai pu établir des résultats définitifs ([29], [32], [33], [35], [39],
[40], [49], [50], [73]) sur I'approximation forte optimale des temps de records et des valeurs
de records, a l'aide de processus de Wiener. C'est ainsi, entre autres, que j'ai montré que,
pour k >1 fixé, il était possible de construire (sur un espace de probabilités convenable) un
processus de Wiener (ou mouvement Brownien unidimensionnel) standard {W t):t> O} tel

que la suite des temps de k-records, {n}k) i 1}, vérifie

ngk):exp(%+%W(j)+O(logj)j p.s., lorsque j — oo.
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Ce résultat est obtenu avec une vitesse d'approximation optimale, au sens que le "O(log j)"
ne peut étre remplacé par un "o(log j)". Il permet de ramener I'étude des fluctuations des

temps de k-records a celle des fluctuations du processus de Wiener.

En 1983, j'ai démontré (cf. [40]) (sous I'hypothése d'une loi exponentielle standard, comme ci-
dessus, avec F(x)= IP’(Xl <x)=1-e™ pourx>0) que les processus ponctuels

{Nk(t) t> O}, k=12,.., ayant pour temps d'arrivée {R}k) s 21} —{ng"l) s 21}, avec la
convention que {R}O) T 21} =, composent, k=1,2,..., une suite de processus de Poisson
indépendants de méme /loi )'ai appris ensuite que ce résultat avait été annoncé
indépendamment, mais sans démonstration par Ignatov (1978). J'en ai donc obtenu la
premiére démonstration publiée. Depuis, ce théoréme a été établi a nouveau par d'autres
méthodes (voir par ex. Goldie et Rogers (1984), Vervaat, (1986)).

Dans [51], j'ai montré que, l'indépendance des variables de la suite {R}k) - ng o 2}, pour

une valeur de k>1 donnée, caractérisait la loi exponentielle (au sens que cette propriété
équivaut a ce que l'on ait P(Xlﬁx):l—exp(—/l(x—ﬁ)) Vx>0, pour des valeurs
convenables de A>0et 8 eR). Ceci m'a permis d'unifier tout un ensemble de résultats

disparates déja établis sur le sujet dans la littérature scientifique consacrée a la caractérisation
des lois de probabilité.

Plus récemment, j'ai obtenu dans [112] et [115] (en collaboration avec V. B. Nevzorov), les
extensions de ces résultats d'approximation forte a un contexte considérablement plus
général, et ceci, par une nouvelle technique. C'est ainsi que j'ai démontré des théorémes
d'approximation forte, d'une part, pour les k™ temps de record, correspondant au

remplacement de I'entier k >1 fixé ci-dessus par une suite d'entiers {k,:n>1}, et d'autre
part, dans le cadre (voir [131]) de records basés sur des observations {Xn n Zl},
indépendantes, mais dont la loi F,(x) =P (X, < x) varie avec 7. On suppose ici que F, estde

la forme F, =F", ol Fdésigne une loi de répartition fixe, et {e, :n>1},une suite d'entiers

positifs. Il s'agit du " F* - scheme", introduit par V. B. Nevzorov (1986).

Ce modele est le seul pour lequel les indicatrices l{ , des événements que n est un

xn>xn71,n71}
temps de record, composent une suite de variables aléatoires indépendantes. Pour mémoire,

le fait que les indicatrices des temps de record 1{X - }soient indépendantes dans le cas
n n-1,n-1

d'une suite {xn,nzl} de variables aléatoires indépendantes de méme fonction de

répartition continue £, a été pour la premiére fois mis en évidence par A. Rényi (1962). Cette
derniére situation correspond au cas particulier de "F“- scheme' obtenu pour
a,=1 Vvn2x1 Dans[136] (avec V.B. Nevzorov) j'étudie des propriétés de rééchantillonnage

par bootstrap de la suite de ces records.

4.b.c. Extrémes Multivariés.
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Dans une série d'articles publiés a partir de 1978, je me suis intéressé aux /ois /imites pour les
extrémes multivariés, ce qui revient a étudier, pour p =1 fixé, la convergence en loi lorsque

n — oo, du vecteur aléatoire

V:[Yna)—bn(l) Yn(p)—bn(p)],

a,d 7 a(p)
ot, pour j=1...,p, Y,(j)=max{X,(j),.... X,(})}, et {(X,@),... X,(p)):n =1} désigne une
suite de vecteurs aléatoires indépendants de méme loi a valeurs dans R”. Pour chaque choix
de j=1..,p, a,(j)>0 et b (j), pour n=12,..., désignent des suites de constantes réelles
choisies de telle sorte que V, converge en loi, lorsque N — o, vers une loi limite dans R” a

marges non dégénérées. Le probléme est alors de déterminer la structure des lois limites ainsi
obtenues.

J'ai caractérisé, dans [13], [15], [16], [23], [48], I'ensemble de toutes les lois limites possibles
pouvant étre générées par ce modele. Ces résultats ont généralisé au cas p >3 des travaux

antérieurs de Geffroy (1958), Sibuya (1960) et Tiago de Oliveira (1961), obtenus dans le cas
particulier de p=2. Le résultat pour p=1 avait été décrit bien antérieurement, dans un

ensemble de travaux, dis a Fréchet, Weibull et Gendenko, et réalisés de 1923 a 1943.

La structure particuliere de ces lois limites multivariées a toutes sortes de propriétés
remarquables. L'étude de celles-ci m'a permis, notamment, d'introduire, dans [38], les
processus appellés depuis max-stables.

Ces recherches m'ont amené a étudier de maniere approfondie les copules ou fonctions de
dépendance. Il semble, en particulier, que je sois le premier a avoir démontré, dans [14],

I'existence, quelle que soit la fonction de répartition multivariée F (X1 Xp) admettant pour

marges Fj (Xj) = F(oo,...,oo,xj,oo,...,oo), pour j=1..,p, d'une copule C(ul,...,up), fonction

de répartition d'un vecteur aléatoire a marges uniformes sur [0,1], telle que

C(R(%) o Fy (%)) = F (X000 X, ),

en tout point de continuité. Ce résultat est loin d'étre trivial lorsque F et p>2 sont

quelconques. Il est naturel d'utiliser également une telle construction lorque Fest la fonction
de répartition empirique d'un échantillon. Ceci sera évoqué plus loin dans le §2d.

L'estimation des lois extrémes multivariées a fait I'objet des articles [22], [48], [86] (en
collaboration avec J. Tiago de Oliveira), et [97], ou je décris le comportement limite
d'estimateurs de la loi jointe d'extrémes bivariés, dis a Pickands (1981). Ces recherches sont
actuellement développées afin d'appliquer de tels résultats limites pour obtenir la loi de
probabilité de tests dajustement du type Cramér-Von Mises ([125], [146]) (voir le §2d).

4.b.d. Copules et tests d'indépendance.
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La fonction de dépendance empirique (ou copule empirique) est une fonction de répartition
C, dans R, a lois marginales uniformes sur [0,1], qui vérifie l'identité
Co (R0 B (%)) = Fy (%00 Xy ),

ou F, désigne la fonction de répartition empirique d'un échantillon de taille #» dans R?, de
fonctions de répartition marginales

. (%)) =F (o,...,%,%;,0,...,0), pour j=1,..,d.
J'ai entrepris dans [13], [14], [19], [20], [22], [24], [27], [28] I'étude des propriétés limites de
C.. Un exemple des résultats ainsi obtenus est la détermination, dans [26], de la loi exacte,
pour d >1 quelconque, de la statistique de Cramér-Von Mises multivariée, définie par

2
T2 = J'(Fn(xl,...,xd)—F(xl,...,xd)) dF, (X Xg ),
]Rd

ou F(X,...,X;) désigne la fonction de répartition exacte de la variable générique dans R*,

qui engendre un échantillon de taille n>1, lequel a pour fonction de répartition empirique

Fy (X Xg ).

La caractérisation de la loi limite de T? lorsque n — oo n'était jusque la connue que pour d=1,

(Von Mises (1933)), et pour d=2 (Blum, Kiefer et Rosenblatt (1961)). Plus récemment, des
travaux entrepris avec G. Martynov, m'ont permis d'établir des tabulations précises des lois
asymptotiques de statistiques type Cramér-Von Mises ([125]) ces derniéres étant d'un intérét
tout particulier pour les données multivariées (cf. §2c).

Ces recherches ont permis d'obtenir des résultats assez spectaculaires dans l'étude du
processus défini par

Zn(u)=% _n {min

,—L "}—1} pour 0<u <1,

avec

etou {(Xn Y, ):n Zl} est une suite de vecteurs aléatoires indépendants, a valeurs dans R?, et

telles que, pour N>1, et des constantes convenables 4 >0 et x>0,
P(X,>XY,>Yy)=exp(-(Ax+uy)) pour x,y>0.

Dans [97] et [146] (pour ce dernier article, en collaboration avec G. Martynov), j'établis la

convergence en loi de ce processus vers un processus gaussien centré {Z(u):OSu Sl}.

J'obtiens, en particulier, la décomposition de Karhunen-Loeve explicite de {Z(u):0<u <1},

en faisant intervenir les valeurs propres de I'équation de Fredholm associée au noyau de

covariance. Ces derniéres sont données par
A = 0 pour k=12,..
k(k+1)(k+2)(k+3)
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Les fonctions propres associées s'expriment directement et explicitement a partir de

polynémes de Jacobi. Ce résultat permet, entre autres, d'établir la convergence en loi, lorsque
n — oo,

[Z20d —5[ 22 0d=3 40,

ou {w, :k>1} désigne une suite de variables aléatoires normales N(0,1) standard. Ceci

permet de tabuler la distribution correspondante et de construire ainsi un test
d'indépendance des paires exponentielles {(xn,Yn):nzl}. De plus, c'est un des rares
exemples connus ou une telle décomposition est explicite pour un processus gaussien d'intérét

statistique. Les autres cas concernent le processus de Wiener, le pont brownien, le processus
d'Ornstein-Uhlenbeck, et surtout le processus d'Anderson et Darling (1952), défini par

B(u)//u(l—u), ou {B(u) :0<u Sl} est un pont brownien. Dans ce dernier cas, les valeurs

propres sont données par

:# pour k=12,..,
k(k +1)

et les fonctions propres sont aussi des polynémes de Jacobi. Je travaille actuellement a montrer
que ces résultats peuvent étre unifiés et généralisés en faisant usage de la théorie de la
représentation des groupes, ou les polynémes de Jacobi interviennent directement.

4.b.e. Tests d'ajustement.

Dans [34] et [36], j'ai établi que certains tests d'ajustement proposés par E. Parzen en 1979
pour vérifier des hypothéses sur une loi de probabilité, indépendamment de ses paramétres
de location et de dispersion, avaient une loi limite basée sur le pont Brownien, si et seulement
si la loi de I'échantillon était uniforme, exponentielle, ou exponentielle aprés un retournement
d'échelle. Cette propriété s'exprime sur le pont Brownien {B(u):0<u <1}, en constatant que

u 1
| (u) = B(u) - jo B(V)g(v)dv +u jo B(v)g(v)dv
est un pont Brownien, si et seulement si ¢(u) est égala 1, 1/u, 1/(1—u), ou une combinaison

de ces fonctions.

Dans un tout autre ordre d'idées, j'ai développé la théorie asymptotique des méthodes de
comparaison non-paramétriques de deux échantillons X,,..., X, et Y,,...,Y,, de fonctions de

répartition empiriques H, (X)=n"#{X, <x:1<i<n} et K (x)=n"#{Y, <x:1<i<n}, et
de fonctions de quantiles H_*(s)=inf {X: H,(x)> S} et K '(s)=inf {X: K, (x) = S}. Ces

comparaisons sont basées sur les P-P et Q-Q plots, ces derniers étant, par définition, les
statistiques

K, (H,'(s)) et K;*(H,(s)).
J'ai obtenu les lois limites de tests basés sur ces statistiques, ainsi que des principes d'invariance

forts dans [82] (avec D. M. Mason), [89] (avec J. Beirlant) et [109], pour le processus de
Kaplan-Meier (avecJ. H.J. Einmahl).

27



4.c. Approximation de Poisson.
Depuis les travaux fondamentaux de Poisson au XIX*™ siecle, I'étude de I'approximation de la
loi £($5) de la somme partielle 5, = Xi+...+X, d'ordre n d'une suite de variables indépendantes
X,%,..., de Bernoulli, telles que, pour n=1,2,...,

P(X=1)=1-P(X,=0) = p, < [0,1],
par laloi () = L(7,) d'une variable de Poisson 7, telle que, pour n=1,2,...,

k
n

P(T,=k) = ‘Ii,

oU U = pr+..+ Py, est resté une question classique du calcul des probabilité, d'une importance

exp(- 1 ») pour £=0,1,...,

comparable a celle du théoréme central limite (convergence vers la loi de Laplace-Gauss),
dont la résolution était, cependant, restée incomplete. Il peut paraitre donc surprenant que la
détermination précise de la vitesse exacte de convergence en loi de L(S;,) vers L(T) (la loi de
Poisson) n'ait pu étre déterminée qu'au cours de la décennie 1980-90, et ce, malgré
I'ancienneté du probleme.

Pour mesurer la distance entre les lois £(S$,) et (75, il est commode d'utiliser des métriques
probabilistes telles que la dlistance en variation

d, (L(S,), L(Tn))ziig\lp(sn e A)-P(T, € A).

J'ai pu apporter, dans une série de travaux ([62], [64], [69], [77], [78], [79], [80], [84], [103]),
en collaboration avec A. Karr, R. Serfling, et D. Pfeifer, une solution presque compléte au
probleme de I'évaluation asymptotique et a distance finie de d,, et ce, par une technique

originale, basée sur les semigroupes d'opérateurs dans les espaces de Banach.
Antérieurement, I'évaluation de d,,, pour le choixde z, =E(T,)=E(S,)= p,+...+ p,, avait

fait 'objet de nombreux travaux. Par exemple, en 1960, L. Le Cam avait obtenu la borne
supérieure

d, (L(S,),L(T,))< min{zn: pZ, max(p,,..., pn)}.

En 1984, Barbour et Hall précisérent cette borne en obtenant l'inégalité

d, (L(S,),L(T,)) < {.Z:: p, }_l {1—exp(—g p. ]}.Z:" p’.

J'ai obtenu une évaluation asymptotique exacte de cette distance, en montrant, en particulier,
dans les travaux [62] et [80], cités plus haut, que

dV (L(Sn)! L(rn)) = DV + r-V'
Dans cette expression, le terme princijpal D, est égal a

(& L\ (e pHb-p)
o3[ En | o)

Y al

ou
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: 1 1) 1 1Y
= = Fy = —_ —_ ' b: —_— - y
M=, él P, a Mu+2+(,u+4j J P+2 (,u+4j ‘

et |U|<u<|u|+1 désigne la partie entiere de .

Le terme résiduel ry de I'expression ci-dessus est asymptotiquement négligeable relativement
a Dy et peut étre évalué a l'aide de développements, ou, plus simplement, borné
supérieurement. L'une de ces bornes, donnée dans [80] (en collaboration avec D. Pfeifer),
montre que

Mgﬂ lorsque H:(Zn:p?]/(zn:p.j<l.
2\J1-260 = = ) 2

Par exemple, lorsque

@p?j/@pijao et #”:izl:p‘ S

ces résultats permettent d'obtenir I'équivalent asymptotique (cf. [62]) remarquable

ARARERE e

qui améliore du facteur multiplicatif 1/~/27€ la borne de Barbour et Hall (1984).

J'ai également obtenu des évaluations analogues en remplagant la distance en variation par
d'autres métriques mesurant les distances entre lois de probabilité. Parmi celles-ci, il faut
mentionner les distances de Kolmogorov, de Fortet-Mourier, et la catégorie générale formée
par les distances de Wasserstein.

Dans le cas particulier de la distance de Kolmogorov, définie ici par
dy (L(S,),L(T,)) = sup [P(S, <x)-P(T,<x),
j'ai montré, dans [80] et [84], (avec D. Pfeifer, M. Puri et S. Ralescu) que, si Z, désigne une

variable aléatoire normale, de parameétres
N [Z P > pi(L- pi)j.
i=1 i=1

ou Z p, désigne I'espérance, et z p;(1— p;) la variance, et si
-1 i=1

n n n n n 1/2
(Z pfj/(z pi]—>0, D p oo, et (z pfj/(z pi] —a,
i=1 i=1 i=1 i=1 i=1
on a alors, pour tout n suffisamment grand,
dK (L(Sn)! L(Tn)) > dK (L(Sn)! L(Zn))! resp' dK (L(Sn)l L(Tn)) < dK (L(Sn)’ L(Zn))7
lorsque a vérifie

a>T~2, resp. a>T2,
ou I'=0.2784... est solution de I'équation 1+ x + log x = 0.
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Ces résultats permettent de tracer une frontiére précise entre le cas ou l'approximation
normale est meilleure que I'approximation Poissonienne de celui ou l'inverse a lieu (ceci, pour
I'approximation de la loi de sommes de variables de Bernoulli vis a vis du critere donné par

par la distance de Kolmogorov).

Les méthodes basées sur I'approximation de Poisson fournissent un outil particulierement
puissant sur /e plan théorique, dans I'étude des processus empiriques. D'un point de vue
pratique, ces techniques sont également extrémement utiles pour analyser les événements
rares, en fiabilité. Soit, par exemple, un équipement industriel possédant un (grand) nombre 7
de composants indépendants ayant des probabilités individuelles p., i=1,..,n, de

défaillance, trés petites, dans une période donnée. Le nombre de défaillances pouvant étre
enregistrées est alors une variable aléatoire S, qui se trouve étre une somme d'indicatrices de

Bernoulli comme ci-dessus. Le calcul de la distribution exacte de S est trés long et difficile
lorsque le nombre des composants est élevé, et les p, non-identiques. Par contre,
I'approximation de la loi de S, par une loi de Poisson est facile, car il suffit de sommer les

probabilités individuelles de défaillance pour en obtenir le paramétre.

Bien entendu, une telle approximation ne peut étre utilisée que si on en maitrise bien le terme
d'erreur, ce qui motive les recherches précédentes, dont les résultats sont utilisés tant dans
des modeles actuariels (par exemple, pour les calculs de primes pour les équipements
pétroliers "off-shore"), que dans des modéles industriels (étude des défaillances de grands
équipements).

4.d. Processus de sommes partielles et de renouvellement.

Soit {X,:n>1} une suite de variables aléatoires centrées, de variance égale a 1,
indépendantes et de méme loi. Pour t >0, on désigne par
_ N\
S(t) = Zi:lxi’
le processus de sommes partielles associé a cette suite (ici, |t |<t<|t|+1 désigne la partie

entiere de ¢ et Z(O):O). Sous réserve d'existence, au voisinage de 0, de la fonction
(%]

génératrice des moments y (t) = E(exp(tXl)), le théoréme d'approximation forte de Komlés,

Major et Tusnady (1975, 1976) montre qu'on peut construire, sur un espace de probabilités
convenable, un processus de Wiener standard {W (t) :t >0}, de telle sorte que

|S(t)—W (t)] = O(log t) p.s. lorsque t — oo,
Pour une suite de constantes positives {kn ‘nz l}, considérons les accroissements maximaux

I,(k,)= sup {S(t+k,)-S(t)} et 1 (k)= sup {W(t+k,)-W(t)}.

O<t<n-k, <t<n—k,
La vitesse d'approximation de S(t) par W(t) montre que, lorsque k,/logn— o, le

. 1 N . 1 .
comportement, au premier ordre, de | (k,) s'apparente a celui de I'expression analogue

I'(k ), obtenue en remplacant S(.), par le processus de Wiener W (.). Par contre, lorsque
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k,/logn— Cc <o, cette propriété n'est plus satisfaite, puisqu'il est alors possible de montrer

que k'l (k,) converge vers presque sirement vers ¢ =inf {x>0:¥(x) >1/c}, ou
Y(x)= sup {tx—log w(t)}
ty (t)<oo
est la fonction de Chernoff (ou transformée de Legendre) associée a la loi commune des
X., 1=12,..., par l'intermédiaire de sa transformée de Laplace y(t) = ]E(exp (tX ))

Ce résultat, dont une version a été mise en évidence pour la premiere fois par Shepp
(1964),est aujourd'hui connu sous le nom de théoreme d'Erd&s-Rényi (1970). J'ai consacré une
part significative de mes travaux ([53], [58], [59], [65], [66], [74], [83], [90], [101]) (avec,
notamment, L. Devroye, J. Lynch, J. Steinebach, P.Erdés et P. Révész) a I'étude de ce théoreme
et des questions qui lui sont apparentées, relevant de I'étude générale des fluctuations de
sommes partielles de variables aléatoires indépendantes. J'ai, en particulier, obtenu en 1986-
87, dans [53] et [67], la forme compléte du théoréme d'Erd&s-Rényi (celui-ci n'avait été établi
antérieurement qu'avec des restrictions sur la valeur de ¢>0), ainsi que la solution du
probléme, lontemps resté ouvert, de la détermination de la vitesse de convergence de cette
loi limite. Dans [101], j'ai obtenu la forme générale du théoréeme d'Erdés-Rényi fonctionnel, en

établissant que l'ensemble {krjl(S(t+an)—S(t)):OSt < n—kn}, de fonctions de se[0,1],
converge, dans une topologie convenable, vers un ensemble limite de fonctions sur [0,1],

dont j'obtiens également la caractérisation. Dans le cas ou lP(u)/|u| — o lorsque |u| — o, ce

résultat (également obtenu dans ce cas particulier par Borovkov (1991) et Sanchis (1994))
donne un ensemble limite qui n'est autre que la boule unité d'un espace d'Orlicz. Celle-ci est
composée (pour un choix d'échelle convenable) de I'ensemble des fonctions absolument
continues de la forme

f(s):joS f (u)du, pour se[0,1], avec J':c‘P(c’lf(u))du <1,

ou f(t) :% f (t) désigne la dérivée de Lebesgue de £

Ces recherches ont débouché sur I'étude systématique des processus empiriques locaux (voir
les §5-6) et de queue, a l'aide de lois fonctionnelles et de techniques basées sur les grandles
déviations.

4.e. Processus empiriques.

Etant donné une suite U,,U,,..., de variables aléatoires indépendantes de loi uniforme sur
[0,1], on définit, pour n>1, la fonction de répartition empirique uniforme par
F,(x)=n"#{U, <x:1<i<n} pour xeR,

ou #E désigne le nombre d'éléments (ou la cardinalité) de £ On définit la fonction empirique
de quantile uniforme par la formule:
G,(t)=inf{s>0:F (s)>t} pour 0<t<l.
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Le processus empirique uniforme «, et le processus de quantile uniforme [, sont alors
définis respectivement par
a,(t)=n"?(F,(t)-t) et B, (t)=n"?(G,(t)-t) pour 0<t<l.

Une partie importante de mes travaux concerne I'étude des propriétés asymptotiques de ces
processus. Les principaux résultats que j'ai obtenus sont détaillés dans les paragraphes ci-
dessous.

4.e.a. Représentation de Bahadur-Kiefer.

En 1990, avec D. M. Mason, j'ai résolu, dans [88], la conjecture de Kiefer, restée ouverte depuis
1970. Pour énoncer ce résultat, posons, pour toute fonction g bornée sur [0,1],
||g|| = Sup|g(t)|. Bahadur (1966), et Kiefer (1967, 1970), ont montré que:

0<t<l

(i)Pour tout t, € [0,1] fixé,
limsup {n"*(2loglog n)"* |e (t )+ B (t )|V = (t. (1—t )} 223 ps,
pyn~*(2loglog n) (L) + B, ()] =(t (-1t p

n—o0

(7))On a
lim sup{n““(ZIogIog N~ |, +ﬂn||} =2 ps.
(7i))On a
Iim{n““(log n) 2 W} =1 en probabilité.
n—o0 an

Kiefer (1970) a émis la conjecture que la limite (7i) avait lieu presque strement. J'ai démontré
([88]) (avec D. Mason) que c'était effectivement le cas. Cette propriété permet alors de
ramener la démonstration de (7)) a celle de la loi du logarithme itéré de Chung (1948), c'est a
dire, au fait que

limsup{(loglog n) |, |} =27** ps.

Dans une série d'articles ( [82], [88], [93], [99], [100], [105], [106]), écrits pour partie avec J.
Beirlant, D. Mason, J. H. J. Einmahl et J. Steinebach, j'ai pu développer ces résultats et les
étendre a d'autre processus tels que le processus de sommes partielles, le processus de
renouvellement, le processus de Kaplan-Meier et les processus empirique et de quantiles
associés aux espacements.

Par exemple, dans un travail récent ([117]), avec D. Mason, j'ai pu élucider le mystere de la
constante bizarre 2"°3™* qui apparait dans le membre de droite de (7). Grace a une nouvelle
démonstration de cette propriété, basée sur une /oi fonctionnelle du logarithme itéré, il a été
possible d'en expliquer que I'origine, se ramenait la formule simple

sup /s(1-s%) =2"23"%",

0<x<1

Les résultats ci-dessus sont intimement liés a I'étude des modlules de continuité de «, et f,.

4.e.b. Lois limites fonctionnelles locales.
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Le comportement des fluctuations locales du processus empirique uniforme o, et du
processus empirique uniforme de quantiles [, a fait 'objet d'une grande partie de mes

travaux récents. Des (1984), j'avais décrit, dans [44] avec L. Devroye, le comportement

presque sar des K. -espacements uniformes pour Kk, =0O(log n), ce qui se raméne a I'étude
des incréments d'ordre n'k, du processus empirique de quantiles uniforme

{B,(t):0<t<1}. Depuis 1988, jai entrepris I'étude plus systématique de ces quantités, a

I'aide, principalement, de /ois fonctionnelles limites.

Considérons une suite de constantes positives {h :n>1}, vérifiant
0<h,<1 h {0, nh Teo, nh /logn—ce[0,], (log(1/h,))/loglogn—d e[0,o].

On considére les ensembles aléatoires de fonctions définis par

¢ _{an(t+hn|)0!n (t) :OSTSl—hn}

2h,log(1/h, )

ou I(t) =t désigne la fonction identité définie sur [0,1], et
_ ﬂn (t+hn| )_ﬂn (t)

" | (2hlog(1/h,)

Désignons par S, l'ensemble des fonctions £ définies dans [0,1], telles que f(0)=0, et

:Ostglhn}

absolument continues, de dérivées de Lebesgue f telles que

1l ={[ 1 (t)zdt}llz <1
H 0
Cet ensemble n'est autre que la boule unité de /espace de Hilbert a noyau autoreproduisant
associé a la fonction de covariance du processus de Wiener, utilisée par Strassen (1964) dans
la /oi fonctionnelle du logarithme itéré. Avec la notation ||g|| = §g£)1|g(t)|, posons, pour toute
partie A, non vide de I'ensemble B [0,1] des fonctions bornées sur [0,1],
A ={feB[01]:3g e A|f -g|<¢].

Enfin,si Ac B[O,l], et BB [0,1], on définit la dlistance de Hausdorffentre Aet B, par

A(AB)=inf{e>0:AcB’ et B A},
siuntel £ >0 existe, et A(A, B) = oo autrement. Dans [108] (avec D. M. Mason), j'ai montré

que, sous ces hypothéses, lorsque ¢ =d =,
limA(&,,S)=1imA(F,.S)=0 p.s.

Le comportement de ces suites lorsque ¢ <o ou d <oo est décrit dans [107], [108], [120],
[126],[167].

Lorsque t, €[0,1) est fixé, le processus empirique localen t, est défini par la suite
a,(t, +hs)—a,(t,)

\/2h loglog n

pour se[0,1].

33



On suppose que
h,40, nh T, nh /loglogn—re[0,x].

Dans [91] (avec D. M. Mason), j'ai décrit le comportement presque str de { f,}, en montrant

notamment que cette suite était presque strement relativement compacte dans I'ensemble
B[0,1] des fonctions bornées sur [0,1], muni de la topologie uniforme. De plus, j'ai établi que,

pour I < oo, 'ensemble limite s'exprimait comme la boule unité d'un certain espace d'Orlicz.

Récemment, dans [137], j'ai montré que, pour toute fonction #de lI'ensemble de Strassen, i.e.
telle que f(0) =0, avec

. 12
1l ={[}f20d] =1
ou f(t) :% f(t) estla dérivée de Lebesgue de # et, pour toute suite {h :n>1} telle que

h, 40, nh, T, nh /loglogn— oo,
on a, en notant ||g|| = sup|g(t)|,
0<t<1

a,(h,e) 7
v/ fl=— &
{/2h loglog n 2 /1_|f|];

Dans [117], [120], [143], les résultats correspondant au processus empirique ¢, sont

lim inf (2loglog n)

generalisés au cas de variables aléatoires a valeurs dans R, pour des processus indexés par
des fonctions ou par des ensembles. Ces travaux permettent de décrire, par des corollaires
simples de théorémes généraux, le comportement presque str d'un trés grand nombre de
statistiques non paramétriques /ocales (telles que développées dans le cadre de l'estimation
non paramétrique de la densité, cf. §). Nous traitons plus en détail dans ce qui suit le cas
particulier de I'étude des statistiques des queues de distribution.

4.e.c. Approximation forte et fluctuations du processus des quantiles.

Dans larticle récent [129], j'ai montré que lecomportement asymptotique du processus

empirique local de quantiles, basé sur g, pouvait différer tres notablement de celui du
processus empirique local basé sur «,. Le résultat s'énonce comme suit. Fixons

t, € ]0,1[. Considérons la suite de fonctions de s e [0,1], définie par

B, (t,+hs)- 5. (t)

\/Zhn {Iog+ (hi/ﬁ] +loglog n}

ou log.u= Iog(max{u,e}). Alors, sous des hypotheses générales de comportement et de

9,(8) =

régularité portant sur {h :n>1}, supposant, en particulier, que nh, /log n— o, la suite
{9, :n>1} est presque sirement relativement compacte dans I'espace des fonctions bornées

muni de la topologie uniforme, et a pour ensemble limite I'ensemble de Strassen (défini plus
haut au §5b). Il est remarquable que ce résultat differe de celui qui serait obtenu, soit pour
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t, =0, soit en remplagant S, par ,. Dans chacun de ces cas, le terme log, (1/(hn\/ﬁ))
disparait.

Une application directe de cette propriété montre que, pour tout processus de Kiefer
{K(S,t):SZ0,0StSl}, et pour tout £ >0, ona

ﬂn (t) —nY2k (n,t)‘} =0 p.S.

L'approximation des processus empiriques et de quantiles uniformes par des processus de
Kiefer est d'une importance particuliére en statistique asymptotique. Un processus de Kiefer
K(n,t) est une somme

limsup n**(log n)* {sup
n—o 0<t<1

K(n,t)=3 B )

de ponts browniens B, (t) =W, (t) —tW. (1), indépendants (construite a partir d'une suite de
processus de Wiener {Wi (t):t 20}, i=12,..., indépendants). La meilleure vitesse connue

d'approximation du processus empirique par un processus de Kiefer est due a Komlds, Major
et Tusnady (1975). lls ont établi que, (sur un espace de probabilités convenable, et pour un
processus de Kiefer K'(n,t) approprié), lorsque n — oo,

sup|er, (t) - n’”zK'(n,t)‘ =0(n"log’n) ps.

0<t<1

En ce qui concerne le processus des quantiles, le meilleur résultat connu est dit a Csérgé et
Révész (1975,1976) qui ont montré que (sur un espace de probabilités convenable, et pour un
processus de Kiefer K"(n,t) approprié), lorsque n — oo,

sup

B, (t)—n’“zK"(n,t)‘ = O(n’“4 (log n)“2 (loglog n)m) p.s.
0<t<1

Csorgé et Révész (1975,1976) ont émis la conjecture que le meilleur ordre possible

d'approximation uniforme de A, (t) par n™"?K(n,t) pourrait étre analogue a celui obtenu

-1/2

pour «,, a savoir en n?(log n)>. Mon résultat de [129] infirme cette conjecture. Plus

récemment (dans [134]), j'ai pu montrer, en fait, que la vitesse d'approximation obtenue par
Csorgd et Révész (1975,1976) était optimale, en apportant une solution finale a ce probleme,
resté ouvert depuis 1975. Mon résultat montre l'existence d'une constante positive G
comprise entre 1/11 et 27%*, et telle que, quel que soit le processus de Kiefer K considéré,

on ait
14

lim sup(n”“(log n)'l/2 (loglog n)_1 )

n—oo

B,)-n*K"(n,)| >C ps.

Plus récemment, dans [142], j'ai montré qu'on pouvait approximer le processus empirique des

quantiles avec une vitesse d'approximation d'ordren®™?, pour &> 0 arbitraire, a l'aide de

processus de Kiefer itérés. Dans [133] et [139], je décris le comportement local du processus
des quantiles pour des accroissements d'ordre h = cnlog n.

4.e.d. Espacements.

Soit X'= X;,...X, un échantillon de taille 7 d'une loi de probabilité réelle, dont les statistiques
d'ordre sont notées
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Xin< o £ X0

L'étude des espacements Xu1+Xn ~=1,.,n-1 associés (qui peuvent aussi étre interprétés
comme les accroissements d'ordre 1/n de la fonction de quantile empirique de I'échantillon), a
été développée dans mes articles [31], [32], [41], [44], [45], [56], [57], [61], [75]
essentiellement de 1981 a 1988, puis, a nouveau en 2003, dans [148].

Mes travaux ont porté tout d'abord sur les espacements maximaux

M,= maXi< f<n}{X/+1,n- X/;n},
dans le cas de lois uniformes, ainsi que dans le cas de lois plus générales. En particulier, j'ai
obtenu des encadrements asymptotiques presque slrs pour M, et d'autres statistiques
analogues, ainsi que plusieurs théorémes limites en loi décrivant le comportement de ces
suites aléatoires. Par exemple, dans [61], j'ai établi que, si la loi de X" a une densité £ continue
et positive sur [0,0) et nulle sur ]—oo, 0], etsi, lorsque n > oo, le maximum X, ,de X;,... X, est

tel que a,' (X, - by) converge en loi vers une loi de Gumbel}, de fonction de répartition exp(-

e™), alors

0

limP(a;'M, >x)=]](1-¢™) pour x>0.

n—w k=1

4.f. Statistiques actuarielles - Statistiques des queues de distributions.
4.f.a. Estimation de I'index de Pareto.

Une variable aléatoire Y est dite (cf. [54]) d'index de Pareto\ > 0, si

P(Y> ) =y "™ L(Y),

ou L(.) est une fonction a variation lente a /infini, c'est a dire, telle que pour tout choix de >0,
L(cy)/L(y) — 1 lorsque y — .

Ce type de loi est souvent associé a des phénomeénes physiques, qui se rencontrent
typiquement en assurance, dans le cas de grands sinistres. Il est également présent dans de
nombreux exemples industriels (corrosion), ou naturels (météorologie). Il est donc utile
d'estimer le parameétre A a partir d'échantillons observés, selon le schéma suivant.

Soit une suite Y3, Y5,..., de variables aléatoires indépendantes de méme loi d'index de Pareto
A>0. Désignons par Yi,< ... < Y,,la statistique d'ordre de Y;,..., ;. Pour estimer A, Hill (1975) a

introduit I'estimateur
ke

N = 1S (log Y- log Yo
Ky i3
ou {k,: n > 1} désigne une suite de constantes entiéres telles que
1<k,<n k, T o, etn' k, > 0.
J'ai établi dans [76], en 1988 (avec D. M. Mason et E. Haeusler), qu'une condition nécessaire et

suffisantepour que N\, — \ p.s. lorsque n — o est que
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k.l loglog n — oo.
En 1985, j'ai introduit, dans [55] (avec S. Csérgd et D. M. Mason), un estimateur, comprenant
I'estimateur de Hill comme cas particulier, et défini par

. -1 A .
A = iiK 1 ilK 1 {logY, ., —logY, .}
n =i kn kk =t kn kk n-j+ln n—jnf{ |1

ou le "noyau" {K(t) : t> 0} est une fonction, vérifiant des propriétés de régularité convenables
(comme celle d'étre nulle en dehors d'un intervalle compact de R*, et d'étre a variation
bornée), ainsi que:

jo“’ Kt)dt =1 et j0°° Ke(t)dt < 0.

J'ai établi dans [55] diverses propriétés de  cet estimateur, dont des conditions impliquant sa
normalité asymptotique et sa convergence en probabilité. De plus, j'ai déterminé des choix
asymptotiquement optimaux du noyau K et de la suite &, permettant de choisir ces facteurs
dans les applications pratiques. J'ai également montré que I'estimateur de Hill ne permettait
généralement pas d'obtenir une vitesse de convergence optimale en moyenne quadratique
realtivement a I'ensemble des estimateurs issus de cette famille élargie.

4.f.b. Sommes d'extrémes, coefficient d'ajustement en théorie du risque

Il s'agit d'étudier le comportement limite d'expressions de la forme
Ky
Sn (kn) = ZYn—iJrl,n'
i=1

ou Y, <..<Y,, désigne la statistique ordonnée des n premiéres observations Y,,...,Y, d'une

suite de variables aléatoires indépendantes de méme loi. Ce type de probléme a des
applications naturelles pour I'étude des sommes de grands sinistres en théorie actuarielle. [l
présente aussi un grand intérét théorique dans le cadre de I'étude des statistiques censurées
et tronquées. Enfin, nous mentionnerons plus loin une application obtenue pour I'estimation
du coefficient d ajustement en théorie du risque.

Mes contributions dans ce domaine ont débuté par les articles, [72] et [87], consacrés au cas
ot le maximum Y,  =max{Y,,...Y,} est dans le domaine d'attraction de la loi de Gumbel. On

suppose, dans ce cas, qu'il existe des constantes a, >0 et b telles que, lorsque n — oo,

P(a;!(Y,,—b,)<x)—>exp(-e™) pourtout xeR.

n
Dans ces travaux, j'ai montré (avec D. M. Mason et E. Haeusler) qu'on pouvait se ramener

essentiellement au cas ou la loi des Y; est exponentielle pour i=1,2,..., c'est a dire, telle que

P(Y; >t)=e" pour t>0. Un exemple surprenant des résultats ainsi obtenus est le suivant.

Supposons que K, /loglog n — ¢ € ]0,+o0[. Alors, on a, presque sirement,

. 1 & +2¢C 2C
limsup<s+| — > Y .. —log(n/k = +lo .
Mp{ (kzl“ vian =100 )J} 2c+1F\1+4c 9(20+1$\/1+4c]

La constante bizarre trouvée dans le membre de droite de cette expression a pu étre

expliquée par mon article [96] de 1989 (avec D. M. Mason). J'y ai montré que toute une série
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de lois limites du calcul des probabilités pouvaient étre obtenues comme conséquences de
lois fonctionnelles du logarithme itéré. Dans I'exemple présent, on raisonne comme suit. Tout
d'abord, on établit ([91]) que la suite de fonctions définie par
g,(s) __n G, [k”sj pour 0<s<1,
loglog n n
ou G, (t) désigne la fonction empirique de quantiles uniforme (voir le5 ci-dessus), est presque

sirement relativement compacte pour la topologie faible des fonctions de répartition de
mesures positives. Cette suite a comme ensemble limite I'ensemble, noté I'(c), de toutes les

fonctions de répartition g(s), de mesures positives sur [0,1], ayant une composante singuliere

ds (S), et une composante absoltiment continue E g '(t)dt, telles que

r'(c) = {g 9(0)=0, g, (1+)+ [ ct(c g () Jou 31},

ou /(u)=u—-1-logu pour u>0. Ensuite, on vérifie que
1& 1 k
— > Y ian—log(n/k )r=1 {-lo s)jds+log| —"— |.
{kZl', = 10g ( n)} [ {-log g, (s)} g(loglognj
Il suffit alors de constater que
1 *2¢c 2c
su i{ —log g, (s){ds+lo c}: tlo ,
P L{ 90,5} : 2c+1F/1+4c g(2c+1¢\/1+4c]

pour retrouver la conclusion de [96] citée ci-dessus. Ce genre de résultat explique
naturellement la génération de constantes inhabituelles dans les théorémes limites, a partir de

la solution de certains problémes de calculs d'extrema dans des espaces fonctionnels, rentrant
dans la catégorie générale des espaces o' Orlicz.

Le coefficient d ajustement en théorie du risque est défini comme le plus grand nombre a >0
tel que la probabilité de ruine d'une compagnie d'assurance ayant un capital initial égal a ¢soit
uniformément bornée supérieurement par une expression de la forme Cexp(-at), ou C

désigne une constante convenable. Dans l'article [92] (en collaboration avec J. Steinebach), j'ai
introduit (et étudié les propriétés de convergence correspondantes a) des estimateurs de ce
coefficient d'ajustement basés sur les fluctuations négatives du processus de risque. Ces
estimateurs s'apparentent a des sommes pondérées de valeurs extrémes, et sont aujourd'hui
couramment utilisés, entre autres, pour valider des modeles paramétriques sur la loi des
sinistres.

4.f.c. Approximation forte du processus de risque.

Le processus de risque actuariel est défini par
N (1)

S(t):ZYi,

ou {Y; :i >1} désigne la suite des codts de sinistres, et N(t) représente le nombre de sinistres

eme

observés dans l'intervalle de temps (0,t]. On suppose ici que le n“™ sinistre survenient a

linstant X, +..+X,. On suppose que {X;:i>1}et{Y;:i>1} sont deux suites
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indépendantes, chacune d'entre elles étant composée de variables aléatoires indépendantes
de méme loi, ayant une fonction génératrice des moments finie au voisinage de I'origine. On
pose

E(X,)=m, E(Y,)=px, Var(X,)=s? Var(Y,)=o"
En 1987, dans [71], j'ai prouvé (avec M.Csorgé et L.Horvéth), qu'il existe un espace de
probabilité supportant a la fois le processus {S(t):t>0}, et un processus de Wiener

standard {W t:t> 0} , de telle mani\' ere que, pour x>0 et T >0, on ait l'inégalité

2.2 .2 2 \V2
S(t)_ﬁt_(wj W (t)
m

P| sup - >x+Alog T |<Be ™,
m

0<t<T

pour des A>0, B>0, C >0 convenables.

Des résultats analogues sont obtenus lorsque X, et Y, possedent seulement des moments

d'ordre r > 2. Ces travaux comprennent, comme cas particuliers, les approximations fortes de
Komlds, Major et Tusnady (1975,1976) (en prenant les X, constants), et ceux de Mason et

Van Zwet (1987) (en prenant les Y; constants). De plus, ils permettent diverses applications

actuarielles, ainsi que dans la théorie des files d'attente. L'approximation du processus de
risque par un processus de Wiener permet de simplifier considérablement certaines analyses
du risque actuariel lié aux fluctuations de ce processus. On ne peut en effet, sauf exception,
décrire ce dernier par des calculs exacts, que le cas ou le processus d'arrivée des sinistres est
un processus de Poisson, ce qui est, en général, trés sensiblement différent de la réalité
observée.

4.g. Lois fonctionnelles et théorémes du type Strassen.

Soit {W (t) :t >0} un processus de Wiener standard. La loi fonctionnelle du logarithme itéré
de Strassen (1964) établit que, si, T >3,

W (Ts
f.(s)= __W({s)
2T loglog T

alors, pour toute suite 3<T, <...<T, <..,avec T, —> 0, la suite {an ():n 21} est presque

pour 0<s<],

sirement relativement compacte dans I'ensemble C[O,l] des fonctions continues sur [O,l],
muni de la topologie de la convergence uniforme, et que l'ensemble limite, composé des

limites de toutes les sous-suites convergentes de { f. ():inz l} , est presque stirement égal a

S:{f 1) = [ pu)du, 0<t<1, [ u)du gl}.

Dans un travail récent, en collaboration avec M. Lifshits, j'ai établi ([114], [118]) des condlitions

nécessaires et suffisantes portant sur une semi-norme générale (pouvant prendre des

valeurs infinies) sur C[0,1] pour que le résultat ci-dessus reste vrai pour la topologie définie

par
entre autres, par Lerche (1992) et Baldi, Ben Arous et Kerkyacharian (1992), pour des normes
particulieres (telle que la norme de Holder).

. Ces résultats apportent une solution compléte a un probléme posé 1964, et abordé,
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Dans [113], en collaboration avec P.Révész, j'ai décrit le comportement limite de la suite
d'ensembles aléatoires

Wi (Ts) :0<8<L =Lk |,
\/ZT {log x; +loglog T}

ou {x;:T >0} est une fonction monotone de 7. Ces résultats ont des applications

nombreuses, et sont liés a des travaux analogues sur les sommes partielles dans les tableaux de
variables aléatoires ([122], [123]), et les incréments de processus empiriques ([ 108]).

4.h. Objets fractals aléatoires.

Dans plusieurs articles récents ([116], [121], [127], [128], [132]), écrits, pour partie, en
collaboration avec D. M. Mason et M. A. Lifshits, j'ai entrepris I'étude des objets fractals
aléatoires engendrés par les oscillations de divers processus, tels que le processus empirique,
le processus des quantiles, le processus de Wiener, etc. Voici un exemple de ces résultats. Soit
une suite de constantes positives {hn 'n 21}, vérifiant

O<h,<1, h 0, nh Too, nh /logn—c, (log(1/h,))/loglogn— co.
On considere les ensembles aléatoires définis par

D(4) =4t<[0,1]:1im sup[a” (; :]ongljzl_/ahn ;t)J >

n—oo

Alors, avec probabilité 1 pour tout 4 € ]0,1[, I'ensemble D(4) est partout dense dans [0,1]
et de dimension de Hausdorffégale a 1— 1%,

De nombreuses extensions de ces résultats sont données dans [116], [121], [130], comme, par
exemple, des raffinements de résultats diis a Orey et Taylor (1974) sur le processus de
Wiener. Plus récemment, j'ai obtenu dans [132] (avec D. M. Mason) une version nouvelle de la
loi de Chung pour le processus de Wiener. Celle-ci est décrite en introduisant une nouvelle
famille d'objets fractals aléatoires gengendrés par les points exceptionnels du processus de
Wiener. Dans [127], avec M. A. Lifshits, j'ai montré que ces résultats étaient valables sous
forme fonctionnelle, indépendamment de la norme utilisée, pourvu que celle-ci demeure
compatible avec la loi du logarithme itéré pour le processus de Wiener.

4.i. Statistique appliquée et industrielle.

A coté des travaux de statistique théorique ayant fait 'objet de publications dans des journaux
scientifiques et évoqués ci-dessus une partie importante de mes travaux concerne la
statistique appliquée. Au-dela des articles [25], [46], [98], [102], [111], [119], [140], ont trait
a quelques unes de ces recherches, la majeure partie de celles-ci a fait I'objet de rapports
internes et de notes techniques au sein des organismes ou ils ont été effectués, principalement
des compagnies pétrolieres (Compagnie Frangaise des Pétroles, TOTAL, ELF) et
phamaceutiques (ELF-SANOFI, SANOFI-SYNTHELABO, SANOFI-AVENTIS). Compte tenu de
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leur importance industrielle, ces travaux sont pour I'essentiel du ressort de la confidentialité, et
je n'en mentionnerai que quelques exemples significatifs.

Un résultat ayant fait l'objet de publication partielle ([98], [111]) concerne l'industrie
pétroliere dans le cadre de la modélisation et du contréle des écoulements djphasiques.
Schématiquement, si on pompe dans un pipe-line un mélange de gaz et de liquide, il peut se
former des bouchonsliquides en alternance avec des bulles gazeuses. Il est alors important de
pouvoir disposer de modeles fiables permettant de décrire la longueur des bouchons dans un
écoulement stationnaire. Dans des travaux, en collaboration avec M. Bernicot et H. Dhulesia

([121]), puis avec M. Bernicot ([119]), j'ai pu établir que cette loi était bien représentée,
suivant les circonstances, soit par des modeles gaussiens inverses, soit par des modeles demi-
normaux. La loi gaussienne inverse n'est rien d'autre que la distribution du premier temps de
passage d'un processus de Wiener avec dérive, de la forme vt+oW (t) (avec v>0) a un

niveau donné a > 0. Cette loi a une densité donnée par

a (a—vt)2
fl)=—= )
© o2zt P 20t

Une analyse statistique, comprenant l'ajustement des parametres et la comparaison avec
d'autres familles de distributions possibles, d'un grand nombre d'observations expérimentales
de systemes déja installés (notamment en Indonésie), ainsi qu'une modélisation théorique du

pour t > 0.

phénomene ont permis de mettre en évidence et d'interpréter la génération de ces lois. Ces
recherches contribuent a la prédiction de la taille des bouchons apparaissant a la sortie des
pipe-lines. Les caractéristiques de ces derniers doivent étre convenablement évaluées pour
concevoir une bonne gestion des installations.

Un autre exemple de recherche appliquée est la mise au point de protocoles expérimentaux
pour l'analyse de données pharmaceutiques. Dans [146], en collaboration avec G. Derzko, j'ai
répertorié une famille de plans d'expérience en blocs incomplets équilibrés optimaux dans le
cas de liaisons temporelles. Ces plans sont utilisés pour la comparaison de nouveaux
médicaments en milieu hospitalier, notamment par ELF-SANOFI. Dans le méme champ de
recherche, jeffectue des analyses de durées de survie en données censurées par des
méthodes inspirées par les articles [89], [109] et [125].

Ces activités de statistique appliquée ont le double objet de motiver mes recherches de
statistique fondamentale par 'observation in situ des problemes théoriques posés par la
pratique permanente du traitement des données, et inversement de pouvoir mettre en
oeuvre en industrie des résultats issus de la recherche théorique, par l'intermédiaire de
stagiaires (DEA, ISUP, etc.) issus des formations d'enseignement auxquelles je participe, et dont
I'insertion en milieu professionnel est favorisée par ces relations.

Dans la cadre de ces applications, j'ai travaillé récemment, avec D. M. Mason et G. Shorack sur
le bootstrap. Dans [110], nous avons caractérisé les cas ou les bootstraps des extrémes, de
sommes d'extrémes, de statistiques tronquées et de la moyenne, étaient convergents. Ces
recherches, de nature théorique, sont associées a des applications industrielles.
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Plus récemment, j'ai coordonné un contrat d'assistance technique pour la Commission
Européenne (en 2002-2003). Le rapport correspondant a été rendu disponible sur internet
sur les sites web :

http://europa.eu.int/comm/consumers/cons_safe/news/prod saf fr.pdf

et
http://europa.eu.int/comm/consumers/cons_safe/news/prod saf en.pdf

Mes activités d'expertise sur la sécurité des produits et sur la comparaison des protocoles de
mesure ont donné lieu a de nombreux rapports d'expertise, notamment, auprés de la
DGCCRF, et de plusieurs organismes internationaux (sécurité des mesures d'incendie en
Grande Bretagne).
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