
 1

Curriculum Vitae de Paul Deheuvels – 2011 
--- 

Table des matières 
--- 

 
1. Renseignements personnels      p.2 
 1.a. État Civil        p.2 
 1.b. Adresses        p.2 
2. Carrière         pp.2-5 
 2.a. Diplômes & Études       p.2 
 2.b. Emplois & Fonctions universitaires     pp.2-3 
 2.c. Emplois & Fonctions industrielles     p.3 
 2.d. Congés sabbatiques & Invitations     p.3 
 2.e. Sociétés savantes       p.3 
 2.f. Récompenses académiques      p.3 
 2.g. Autres activités d’intérêt collectif     p.4 

2.g.a. Fonctions éditoriales (liste partielle)    p.4 
2.g.b. Organisation de congrès     p.4 
2.g.c. Activités d’expertise éditoriale (liste partielle)   p.4 
2.g.d. Autres responsabilités administratives – Jurys & Concours  p.4 

2.h. Anciens élèves de thèse (liste partielle)     p.5 
3. Publications principales       pp.5-14 

3.a. Articles de recherche publiés      pp.5-14 
3.b. Articles en cours de publication     p.14 
3.c. Articles en préparation ou soumis pour publication   p.14-15 

4. Synthèse des travaux de recherche principaux    pp.15-  
4.a. Estimation fonctionnelle      pp.15-20 
4.b. Valeurs extrêmes et lois multivariées     pp.21-27 

4.b.a. Lois fortes pour les statistiques d’ordre    pp.20-22 
4.b.b. Records       pp.22-24 
4.b.c. Extrêmes multivariés      pp.24-25 
4.b.d. Copules et tests d’indépendance     pp.25-27 
4.b.e. Tests d’ajustement      p.27  

4.c. Approximation de Poisson      pp.27-30 
4.d. Processus de sommes partielles et de renouvellement   pp.30-31 
4.e. Processus empiriques       pp.31-35 

4.e.a. Représentation de Bahadur-Kiefer    pp.31-32 
4.e.b. Lois limites fonctionnelles locales     pp.32-34 
4.e.c. Approximations fortes et fluctuations du processus des quantiles pp.34-35 
4.e.d. Espacements       pp.35-36 

4.f. Statistiques actuarielles      pp.36-39 
4.f.a. Statistiques des queues de distribution    pp.36-37 
4.f.b. Sommes d’extrêmes, coefficient d’ajustement   pp.37-38 
4.f.c. Approximation forte du processus de risque   pp.38-39 

4.g. Lois limites fonctionnelles et théorèmes du type Strassen   pp.39-40 
4.h. Objets fractals aléatoires      p.40 
4.i. Statistique appliquée et industrielle     pp.40-42 

5. Séjours dans des centres universitaires étrangers (liste partielle)  pp.42-43 
6. Congrès (liste partielle)       pp.43-47 
7. Compléments personnels       p.47 

 
 



 2

1.  Renseignements Personnels 
 

1.a. État Civil 
 

Deheuvels, Paul, René, Louis 
né le 11 mars 1948 à Istanbul, Turquie 
nationalité française1 
marié2, 4 enfants3 
 

1.b. Adresses 
 

Professionnelle: 
L.S.T.A., Tour 15-25, 2ème étage, B213, Université Pierre et Marie Curie (Paris VI) 
4 place Jussieu, 75252 Paris Cedex 15 

Tél.: Sec.   01 44 27 85 62 Tel: 01 44 27 33 51 Fax: 01 44 27 33 42 
Privée: 

7 avenue du Château, 92340 Bourg-la-Reine 
Téléphone & Fax : Tel. Privé:   01 46 61 20 61   Fax Privé:   01 46 61 66 85 
 

Courrier électronique: 
paul.deheuvels@upmc.fr, paul.deheuvels@sfr.fr  

 
2. Carrière 
 

2.a. Diplômes & Études 
 

École Normale Supérieure (rue d'Ulm), 1967-704 
Maîtrise de Mathématiques, Université Paris VI, 1968 
DEA de Mathématiques, Université Paris VI, 1969 
Agrégation de Mathématiques, 1969 
Thèse d'État, Université Paris VI, 1974 
 

2.b. Emplois & Fonctions universitaires 
 

Assistant agrégé, Université Paris VI, 1969-72 
Maître-Assistant, Université Paris VI, 1972-74 

                                                 
1 Par filiation (père : René Deheuvels, professeur émérite à l’Université Pierre et Marie Curie, mère : France 
Lagarde, sans profession) 
2 A Joële Cormerais, le 4 mars 1971. 
3 Fleur Deheuvels, ancienne élève de l’Ecole Polytechnique, mariée, 4 enfants, Sophie Deheuvels, ancienne élève 
de l’ESTP, mariée, 3 enfants, Camille Deheuvels, sage-femme diplômée, mariée, 2 enfants, Aurore Deheuvels, 
opticienne diplômée, célibataire. 
4 Après 2 années de préparation, Math. Sup. (1965-66), Math. Spé. (1966-67) au Lycée Louis-le-Grand, Paris, reçu 
à l’Ecole Polytechnique en 1967 (démission). 
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Maître de Conférences (ancien régime)5, Université Pierre et Marie Curie, Paris VI, 1974-
19786 

Professeur, Université Pierre et Marie Curie, Paris VI 
2ème classe, 1978-1984, 1ère classe, 1985-1995,  
classe exceptionnelle, 1er échelon, 1995-1999,  2ème échelon, 1999- 

Directeur du Laboratoire de Statistique Théorique et Appliquée (L.S.T.A.),  
Université Pierre et Marie Curie, Paris VI, 1982- 

Responsable du DEA de Statistique (puis Master M2, Spécialité Statistique) de 
l'Université Pierre et Marie Curie, Paris VI, 1980- 

Président de la Commission des Thèses de Mathématiques, Université Pierre et Marie 
Curie, Paris VI, 1990-1997 

 
2.c. Emplois & Fonctions industrielles 
 

Conseiller de la Direction de la Compagnie Française des Pétroles – TOTAL, 1974-1994 
Conseiller de la Direction – ELF – 1978-1992 
Conseiller du groupe SANOFI – Recherche & Dévelopement – 1980-2010 
 

2.d Congés sabbatiques & Invitations 
 

Visiting Professor, Columbia University, New York, Semestre de printemps 1989 
Visiting Professor, Columbia University, New York, Semestre de printemps 1999 
Visiting Professor University of Rotterdam, 1993 
Visiting Professor KUL (Katholieke Universiteit te Leuven), 1987 
Professeur Invité, Universita degli Studi di Torino, 1985-1995 
 

2.e. Sociétés savantes 
 

Membre de l'Académie des Sciences, 2000- (Correspondant, 1996-2000) 
Membre correspondant étranger de la "Real Academia de Ciencias Exactas, Físicas y 

Naturales" (Académie Royale d'Espagne), 2002- 
Fellow of the Institute of Mathematical Statistics [IMS], 1985- 
Membre de l'Institut International de la Statistique [IIS-ISI, International Statistical 

Institute], 1978- 
Membre de la Société Bernoulli, 1978- 
 

2.f. Récompenses Académiques 
 

Prix Gegner, Académie des Sciences, 1988 
Prix Pierre-Simon de Laplace, Société de Statistique de France, 2007 
 

                                                 
5 Corps assimilé aux professeurs d’université de 2ème classe, en 1978. 
6 Service militaire de juillet 1975 à juin 1976, comme sous-lieutenant (statut IMO) d’artillerie. Affecté au 45ème 
Régiment de Transmissions (Montélimar), avant d’être affecté au S.R.O.A.T., Service de Recherche 
Opérationnelle de l’Armée de Terre, de septembre 1975 à juin 1976. Lieutenant de Réserve. 
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2.g. Autres Activités d'Intérêt Collectif 
 

2.g.a. Fonctions éditoriales (liste partielle) 
 

Directeur de la collection "Mathématiques", Presses Universitaires de France, 1980-
2000 
Éditeur Associé de "Mathematical Methods in Statistics", 1991-2001 
Éditeur Associé de "Statistics and Probability Letters", 1994-2010 
Membre du Comité Éditorial des "Comptes Rendus de l'Académie des Sciences", 

1995- 
Éditeur Associé de "Extremes", 1997- 
Éditeur Associé de "Statistical Inference for Stochastic Processes", 1997- 
Éditeur Associé de "M.C.A.P." 2002- 
 

2.g.b. Organisation de congrès 
 

Co-organisateur du congrès "Stochastics", Oberwolfach, 1993 
 

2.g.c. Activités d’expertise éditoriale (liste partielle) 
 

Annals of Probability, Annals of Statistics, Probability Theory and Related Fields, 
Annales de l'Institut Henri Poincaré, Journal of Applied Probability, Advances in 
Applied Probability, Stochastic Processes and their Applications, Journal of 
Multivariate Analysis, Journal of Statistical Planning and Inference, Statistics and 
Probability Letters, Statistics and Decisions, Scandinavian Actuarial Journal, 
Comptes Rendus de l'Académie des Sciences, Statistics, ESAIM, Metrika. 
 

2.g.d. Autres responsabilités administratives, Jurys & Concours 
 

Examinateur (oral de mathématiques) du Concours de l’Ecole Spéciale Militaire de 
Saint-Cyr-Coëtquidan (1972-82). 

Examinateur (écrit de mathématiques) de l’Ecole  de l’Air de Salon de Provence 
(1980-1993). 

Examinateur (écrit de mathématiques) du Concours Commun, Mines-Ponts (1976-
1994).   

Membre du Conseil de l'UER de Mathématiques - UFR 920 de Mathématiques, puis 
UFR 929, Université Paris VI, 1974-1997, 1997-2009. 

Membre du CNU, Section 23.4 & 26, 1987-1995, 2003- 
Membre du Comité National de la Recherche Scientifique, Section 03, 1987-1991 
Directeur de l'I.S.U.P. [Institut de Statistique de l'Université de Paris], 1981-82. 
Directeur de l’ESILV - Ecole Supérieure d’Ingénieurs Léonard de Vinci, 2009-2010. 
Membre du Jury de l'Agrégation de Mathématiques, 1971, 1986, 1987 
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2.h. Anciens élèves de thèse (liste partielle) 
 

Adrian Raftery, full professor, University of Seattle, Washington (Membre de la National 
Academy of Sciences des USA depuis 2009). 

Michel Broniatowski, professeur, Université Pierre et Marie Curie (Paris VI) 
George Haiman, professeur, Université de Lille 
Armelle Guillou, professeur, Université Louis Pasteur (Strasbourg) 
Jean Diebolt, directeur de recherches au C.N.R.S. 
Jean-Noël Bacro, professeur, Université de Montpellier 
Zhan Shi, professeur, Université Pierre et Marice Curie (Paris VI) 
Alexandre Berred, professeur, Université du Hâvre 
Marie-France Kratz, professeur, ESSEC 
Charles El Nouty, professeur, Université Paris XIII 
Philippe Berthet, professeur, Université Paul Sabatier, Toulouse 
Margarida Brito, professeur, Université de Porto 
Gane Samb Lo, professeur, Université de Saint Louis (Sénégal) 
Abdelhakim Necir, professeur, Université de Biskra (Algérie) 
Abdelouahid Imlahi, professeur, Université de Tanger (Maroc) 
Gratiane Ennadifi, maître de conférences, Université de Lyon II 
Sergio Alvarez-Andrade, maître de conférences, Université de Compiègne 
Zohra Cherfi, maître de conférences, Université de Compiègne 
Ludovic Menneteau, maître de conférences, Université de Montpellier 
Alain Lucas, maître de conférences, IUT de Caen 
Myriam Maumy, maître de conférences, Université Louis Pasteur (Strasbourg) 
Jean-Renaud Pycke, maître de conférences, Université d’Evry 
Davit Varron, maître de conférences, Université de Besançon 
Pierre Ribereau, maître de conférences, Université de Montpellier 
Vivian Viallon, maître de conférences, Université de Lyon 1 
Salim Bouzebda, maitre de conférences, Université de Compiègne 
Julien Cornebise, Research Associate, University College, London 
Mamadou Kone, maître de conferences, CHU de Caen  
Sarah Ouadah, maître de conférences, AGRO Paris-Tech 
 

3. Publications Principales. 
 

3.a. Articles de recherche publiés 
 

 [1]  Sur la convergence de sommes de minimums de variables aléatoires (1973). C. R. 
Acad. Sci. Paris Ser. A-B 276 309-312 [MR 48 #5156a] 

 [2]  Sur la convergence de certaines suites de variables aléatoires (1973). C. R. Acad. Sci. 
Paris Ser. A-B 276 641-644 [MR 48 #5156b] 

 [3]  Sur une application de la théorie des processus de renouvellement à l'estimation de la 
densité d'une variable aléatoire (1973). C. R. Acad. Sci. Paris Ser. A-B 276 943-946 [MR 
48 #12710] 
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 [4] Sur une famille d'estimateurs de la densité d'une variable aléatoire (1973). C. R. Acad. 
Sci. Paris Ser. A-B 276 1013-1015 [MR 48 #12711] 

 [5]  Sur l'estimation séquentielle de la densité (1973). C. R. Acad. Sci. Paris Ser. A-B 276 
1119-1121 [MR 48 #12712] 

 [6] Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle (1974). 
Annales de l'Institut Henri Poincaré Ser. B 10, f.1, 89-114 [MR 50 #11404] 

 [7] Majoration et minoration presque sûre des extrémums de suites de variables aléatoires 
indépendantes de même loi (1974). C. R. Acad. Sci. Paris Ser.A 278 513-516 [MR 50 
#3317] 

 [8]  Majoration et minoration presque sûre des extrema de processus Gaussiens (1974). C. 
R.  Acad. Sci.  Paris Ser. A 278 989-992 [MR 51 #1930] 

 [9] Conditions nécessaires et suffisantes de convergence ponctuelle presque sûre et 
uniforme presque sûre des estimateurs de la densité (1974). C. R. Acad. Sci. Paris Ser. A 
278 1217-1220 [MR 49 #10032] 

 [10] Majoration et minoration presque sûre optimale des éléments de la statistique 
ordonnée d'un échantillon croissant de variables aléatoires indépendantes (1974). 
Rendi Conti della Academia Nazionale dei Lincei 8, 56, f.5, 707-719 [MR 52 #15625] 

 [11] Estimation non paramétrique de la densité par histogrammes généralisés (1977). 
Publications de l'Institut de Statistique de l'Université de Paris 22, f.1, 1-24 [MR 
#81h:62071] 

 [12]  Estimation non paramétrique de la densité par histogrammes généralisés (II) (1977). 
Revue de Statistique Appliquée 25, f.3, 5-42 [MR 58 #18876] 

 [13] Caractérisation complète des lois extrêmes multivariées et de la convergence des 
types extrêmes (1978). Publications de l'Institut de Statistique de l'Université de Paris 
23, f.3, 1-36. 

 [14] Propriétés d'existence et propriétés topologiques des fonctions de dépendance 
(1979). C. R. Acad. Sci. Paris, Ser. A 288 217-220. 

 [15]  Détermination complète du comportement asymptotique en loi des valeurs 
extrêmes multivariées d'un échantillon de vecteurs aléatoires indépendants (1979). C. 
R. Acad. Sci. Paris, Ser. A 288, f.3, 631-634 [MR #80c:60038] 

 [16]  Détermination des lois limites jointes de l'ensemble des points extrêmes d'un échan-
tillon multivarié (1979). C. R. Acad. Sci. Paris, Ser. A 288 631-644 [MR #80c:60034] 

 [17] Estimation non paramétrique de la densité compte tenu d'informations sur le support 
(1979). Revue de Statistique Appliquée 27, f.3, 47-68 (avec P. Hominal) [MR 
#81e:62040] 

 [18] Estimation séquentielle de la densité (1979). Dans: Contribuciones en Probabilidad y 
Estadistica Matematica Enseñanza de la Matematica y Analysis. 156-168, Grindley, 
Granada, Espagne [MR #81h:62072] 

 [19] La fonction de dépendance empirique et ses propriétés, un test non paramétrique 
d'indépendance (1979). Bulletin de l'Académie Royale de Belgique, Classe des 
Sciences (5) 65, f.6, 274-292 [MR #81h:62073] 

 [20] Non-parametric tests of independence (1980). Dans: Statistique Non Paramétrique 
Asymptotique (J. P. Raoult, Edit.) 95-107, Lecture Notes in Mathematics 821, Springer 
Verlag, Berlin [MR #82c:62061] 
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 [21] Estimation automatique de la densité (1980). Revue de Statistique Appliquée 28, f.1, 
23-55 (avec P. Hominal) [MR #82j:62026] 

 [22] Some applications of dependence functions: nonparametric estimates of extreme 
value distributions and a Kiefer-type bound for the uniform test of independence 
(1980). Dans: Nonparametric  Statistical  Inference. Colloquia Math. Soc. János Bolyai 
32, 183-201, North Holland, Amsterdam [MR #85g:62064] 

 [23] The decomposition of infinite order and extreme multivariate distributions (1980). 
Dans: Asymptotic Theory of Statistical Tests and Estimation. (I. M.  Chakravarti, Edit.), 
259-286, Academic Press, New York [MR #82j:62032] 

 [24] A Kolmogorov-Smirnov test for independence (1981). Revue Roumaine de 
Mathématiques Pures et Appliquées 26, f.2, 213-226 [MR #83c:62064] 

 [25] La prévision des séries économiques, une technique subjective (1981). Archives de 
l'I.S.M.E.A. 34, f.4, 729-748. 

 [26] An asymptotic decomposition for multivariate distribution-free tests of 
independence (1981). Journal of Multivariate Analysis 11 102-113 [MR #82g:62067] 

 [27] Multivariate tests of independence (1981). Dans: Analytical Methods in Probability 
Theory.  (D. Dugué, E. Lukacs et V. K. Rohatgi, Edit.), 102-113, Lecture Notes in 
Mathematics 861, Springer Verlag, Berlin [MR #83g:62074]  

 [28] A non-parametric test for independence (1981). Publications de l'Institut de 
Statistique de l'Université de Paris 26, f.2, 29-50. 

 [29] The strong approximation of extremal processes (1981). Zeitschrift für 
Wahrscheinlichkeitstheorie und Verwandte Gebiete 58 1-6. 

 [30] Univariate extreme values - Theory and applications (1981). Proceedings of the 43d 
Session of the International Statistical Institute.  49, f.2, 837-858. 

 [31] Strong limiting bounds for maximal uniform spacings (1982). Annals of Probability 10 
1058-1065. 

 [32] Spacings, record times and extremal processes (1982). Dans: Exchangeability in 
Probability  and Statistics (G. Koch et F. Spizzichino, Edit.), North Holland, Amsterdam, 
223-243. 

 [33] A construction of extremal processes (1982). Dans: Probability and Statistical 
Inference (W. Grossmann, G. C. Pflug et W. Wertz, Edit.), 53-58, Reidel, Dordrecht. 

 [34] Sur des tests d'ajustement indépendants des paramètres (1982). Dans: Actas, II 
Coloquio de Estatistica - A Estatistica nos Processos Estocasticos, Departamente de 
Matematica, Universidade de Coimbra, 7-18. 

 [35] On record times associated with k-th extremes (1982). Proceedings of the 3rd 
Pannonian Symposium on Mathematical Statistics  (J. Mogyoródi, I. Vincze et W. Wertz, 
Edit.), Akadémiai Kiadó, Budapest. 

 [36]  Invariance of Wiener processes and Brownian bridges by integral transforms and 
applications (1982). Stochastic Processes and their Applications. 13, f.3, 311-318. 

 [37]  L'encadrement asymptotique des éléments de la série d'Engel d'un nombre réel 
(1982). C. R. Acad. Sci. Paris, Ser. A 295 21-24. 

 [38] Point processes and multivariate extreme values (1983). Journal of Multivariate 
Analysis. 13 257-272. 
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 [39] The complete characterization of the upper and lower class of the record and inter-
record times of an i.i.d. sequence (1983). Zeitschrift für Wahrscheinlichkeitstheorie und 
Verwandte Gebiete. 62, 1-6. 

 [40] The strong approximation of extremal processes (II) (1983). Zeitschrift für 
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 62, 7-15. 

 [41] Upper bounds for k-th maximal spacings (1983). Zeitschrift für 
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 62, 465-474. 

 [42] Strong bounds for multidimensional spacings (1983). Zeitschrift für 
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 64, 411-424. 

 [43] Indépendance multivariée partielle et inégalités de Fréchet (1983). Dans: Studies in 
Probabilities and Related Topics (Papers in Honour of Octav Ionicescu on his 90th 
Birthday) (M. Demetrescu et M. Iosifescu, Edit.), 145-155, Nagard, Bucarest. 

 [44] Strong bounds for the maximal k-spacing when k ≤ c log n (1984). ). Zeitschrift für 
Wahrscheinlichkeitstheorie und Verwandte Gebiete 66, 315-334 (avec L. Devroye). 

 [45] Strong limit theorems for maximal spacings from a general univariate distribution 
(1984). Annals of Probability 12, 1181--1193. 

 [46] How to analyze bioequivalence studies - The right use of confidence intervals (1984). 
Journal of Organizational Behavior and Statistics 1, f.1, 1-15. 

 [47] Asymptotic results for the pseudo-prime sequence generated by Hawkins's random 
sieve: twin primes and Riemann's hypothesis (1984). Dans: Proceedings of the 7th 
Conference in Probability Theory, Brasov (M. Iosifescu, Edit.), 109-115, Editura 
Academiei, Bucarest. 

 [48] Probabilistic aspects of multivariate extremes (1984). Dans: Statistical Extremes and 
Applications (J. Tiago de Oliveira, Edit.), 117-130, D. Reidel, Dordrecht. 

 [49] Strong approximations of records and record times (1984). Dans: Statistical Extremes 
and Applications (J. Tiago de Oliveira, Edit.), 491-496, D. Reidel, Dordrecht. 

 [50] Strong approximation in extreme values, theory and applications (1984). Dans: Limit 
Theorems in Probability and Statistics (P. Révész, Edit.) Vol. 1, 369-404, Colloquia Math 
János Bolyai 36, North Holland, Amsterdam. 

 [51] The characterization of distributions by order statistics and record values - A unified 
approach (1984). Journal of Applied Probability. 21 326-334 (Corr. (1985). 22 997). 

 [52] Point processes and multivariateextreme values (II) (1985). Dans: Multivariate Analysis 
VI (P. R. Krishnaiah, Edit.), 145-164, North Holland, Amsterdam. 

 [53] On the Erdős-Rényi theorem for random fields and sequences and its relationships 
with the theory of runs and spacings (1985). Zeitschrift für Wahrscheinlichkeitstheorie 
und Verwandte Gebiete. 70, 91-115. 

 [54]  Lois de type Pareto et applications à la théorie mathématique du risque (1985). 
Rend. Sem. Mat. Univers. Politecn. Torino. 43, f.1, 25-41. 

 [55] Kernel estimates of the tail index of a distribution (1985). Annals of Statistics. 13 
1050-1077 (avec S. Csörgő et D. M. Mason). 

 [56] Spacings and applications (1985). Dans: Probability and Statistical Decision Theory (F. 
Konecny, J. Mogyoródi et W. Wertz, Edit.), Vol. A, 1-30, Reidel, Dordrecht. 

 [57] The limiting behavior of the maximal spacing generated by an i.i.d. sequence of 
Gaussian random variables (1985). Journal of Applied Probability. 22, 816-827. 
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 [58] Exact convergence rate in the limit theorems of Erdős-Rényi and Shepp (1986). 
Annals of Probability. 14, 209-223 (avec L. Devroye et J. Lynch). 

 [59] Exact convergence rate of an Erdős-Rényi strong law for moving quantiles (1986). 
Journal of Applied Probability. 23, 355-369 (avec J. Steinebach). 

 [60] Strong laws for the k-th order statistic when k ≤ c log n (1986). Probability Theory 
and Related Fields. 72, 179-186. 

 [61] On the influence of the extreme values on the maximal spacing (1986). Annals of 
Probability. 14, 194-208. 

 [62] A semigroup approach to Poisson approximation (1986). Annals of Probability. 14, 
663-676 (avec D. Pfeifer). 

 [63] Simple random walk on the line in random environment (1986). Zeitschrift für 
Wahrscheinlichkeitstheorie und Verwandte Gebiete. 72, 215-230 (avec P. Révész). 

 [64] Operator semigroups and Poisson convergence in selected metrics (1986). 
Semigroup Forum. 34, 203-224 (avec D. Pfeifer). 

 [65] Many heads in a short block (1987). Dans: Mathematical Statistics and Probability 
Theory (M. L. Puri, P. Révész et W. Wertz, Edit.), 53-67, D. Reidel, Dordrecht (avec P. 
Erdős7, K. Grill et P. Révész). 

 [66] Weak laws for the increments of Wiener processes and Brownian bridges and 
applications (1987). Dans: Mathematical Statistics and Probability Theory (M. L. Puri, P. 
Révész et W. Wertz, Edit.), 69-87, D. Reidel, Dordrecht (avec P. Révész). 

 [67] Limit laws of the Erdős-Rényi-Shepp type (1987). Annals of Probability. 15, 1363-
1386 (avec L. Devroye). 

 [68] Exact convergence rates in strong approximation laws for large increments of partial 
sums (1987). Probability Theory and Related Fields. 76, 369-393 (avec J. Steinebach). 

 [69] Semigroups and Poisson Approximation (1987). Dans: New Perspectives in 
Theoretical and Applied Statistics (M.Puri, J. Vilaplana et W. Wertz, Edit.) 439-448, 
Wiley, New York (avec D. Pfeifer). 

 [70] Exact convergence rates in Erdős-Rényi-type theorems for renewal processes (1987). 
Annales de l'Institut Henri Poincaré. 23, 195-207 (avec J. N. Bacro et J. Steinebach). 

 [71] An approximation of stopped sums with applications in queuing theory (1987). 
Advances in Applied Probability. 19, 674-690 (avec M. Csörgő et L. Horváth). 

 [72] The asymptotic behavior of sums of exponential extreme values (1988). Bulletin des 
Sciences Mathématiques. 112, 211-233 (avec D.  M.  Mason). 

 [73] Strong approximations of k-th records and k-th record times by Wiener processes 
(1988). Probability Theory and Related Fields. 77, 195-209. 

 [74] Limit laws for the modulus of continuity of the partial sum process and for the Shepp 
statistic (1988). Stochastic Processes Appl. 29, 223-245 (avec J. Steinebach). 

 [75] The almost sure behavior of maximal and minimal kn-spacings when kn = O(log n) 
(1988). Journal of Multivariate Analysis. 24, 155-176 (avec J. H. J. Einmahl, D. M. Mason 
et F. Ruymgaart). 

 [76] Almost sure convergence of the Hill estimator (1988). Mathematical Proceedings of 
the Cambridge Philosophical Society. 104, 371--384 (avec E. Haeusler  et D. M. Mason). 

                                                 
7 Cet article me vaut l’insigne honneur d’être co-auteur direct du célèbre mathématicien hongrois Pal Erdős, et 
d’avoir ainsi un « nombre d’Erdős » égal à 1. 
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4. Synthèse des Travaux de Recherche Principaux 
 
4.a. Estimation Fonctionnelle 
 
Soit une suite d'observations 1 2, ,...,X X  composée de répliques  aléatoires indépendantes, de 
même loi de probabilité, d'une variable générique X .  En notant  ( ) ,F x X x   la fonction 

de répartition de X , nous nous plaçons sous l'hypothèse d'existence d'une densité (au sens de 
Lebesgue)  

( ) ( ) pour ,
d

f x F x x J
dx

     

où  ', 'J a b  désigne un intervalle ouvert non vide de . Par la suite, nous nous limiterons 
essentiellement au cas où (il existe une version de) f  (qui est) continue sur J , et désignerons 
par  ,I a b J   un intervalle tel que ' 'a a b b       . 
 
Une partie importante de mes travaux concerne l'estimation de f  à partir de l'échantillon de 
taille n 1 de X  composé des n premières observations 1,..., nX X  de la suite. Il s'agit ici 
d'estimation fonctionnelle non-paramétrique, du fait qu'on construit des statistiques : 
 

 1( ) ; ,..., ,n n nf x f x X X  
 

dont l'intérêt est de converger vers la densité inconnue ( )f x  lorsque la taille n de l'échantillon 
tend vers l'infini, et ceci, sous des hypothèses très générales sur f  (comme celle, par exemple, 
consistant à supposer que f  est continue), et ne requiérant pas d'admettre a priori que f  est 
donnée par un modèle paramétrique du type ( ) ( ; )f x f x  , où p  , et où la forme 
fonctionnelle (.;.)f  est connue. 
 
L'une des statistiques non-paramétrique les plus utilisées pour estimer f est l'estimateur à 
noyau (Rosenblatt (1956), Parzen (1962)), défini, à partir d'un noyau ( )K  , et d'un paramètre 
de lissage ,nh  par 

1

1
( )   pour  .

n
i

n
in n

x X
f x K x

nh h

 
  

 
 � 
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- Le noyau ( )K   est, par hypothèse, une fonction réelle de variable réelle, vérifiant des 
propriétés minimales de régularité (on supposera typiquement que ( )K   est à variation 
bornée, et s'annulant en dehors d'une partie compacte de  ). On suppose également que  

( )K   vérifie l'égalité 

( ) 1,K t dt



  

cette dernière condition impliquant que 

( ) 1.nf t dt



  

La classe des estimateurs à noyaux comprend, comme cas particulier l'histogramme, obtenu 
lorsque (.)K est défini par  

 1 1
 ,
2 2

( ) 1 . 
u

K u
  

  

 
- Le paramètre de lissage  0nh   est à choisir de manière que 
  

0  et  ,   lorsque  .n nh nh n    
 

Ces conditions sont nécessaires et suffisantes pour la convergence en norme L1 de nf  vers f  
lorsque ,n   pour tout choix de ,f ceci signifiant que, pour tout intervalle compact 
 

 , ,I a b J     
 

et pour toute densité de probabilité ,f on a, lorsque ,n   
 

| ( ) ( ) |nI
f x f x dx  0. 

 
Par la suite, nous supposerons, plus spécifiquement que 
 

0  et  ,   lorsque  .n nh nh n      
 
Mes travaux sur ce type d'estimateur ont débuté en 1972-74, et ont d'abord cherché à 
résoudre le problème (alors ouvert) de caractériser la convergence presque sûre uniforme, 
ainsi que la convergence presque sûre ponctuelle de nf  vers f  lorsque .n   Ces deux 
questions recueillaient un intérêt constant de la part de nombreux chercheurs depuis le debut 
des années 1960, et on ne disposait alors que de résultats très partiels. J'ai résolu ce problème 
dans [9], en montrant que, indépendamment de ,K  il est nécessaire et suffisant pour la 
convergence presque sûre [p.s.] de nf  vers f  lorsque lorsque ,   continue,n f  que 
(en notant x0   R un point fixé à l'avance), 
 

nhn / loglog n    , 
 

 pour la convergence (ponctuelle) p.s. de fn(x0) vers f(x0) lorsque n   , et 



 17

 
nhn / log n    , 

 
pour la convergence p.s., uniforme sur tout compact de fn vers f  lorsque lorsque n   . 
 
Ces recherches se sont poursuivies dans une série d'articles, portant, entre autres, sur le choix 
de hn ([11], [12], [17], [21]), les estimateurs séquentiels et apparentés ([3], [4], [5], [18]), et, 
plus récemment, pour l'obtention de propriétés du deuxième ordre, consistant à déterminer 
les vitesses de convergence exactes de fn vers f. Ces derniers résultats ont été basés sur la 
technique nouvelle des lois limites fonctionnelles locales pour le processus empirique, 
technique que j'ai développée dans une série d'articles à partir de 1990. Ces lois seront 
discutées plus en détail au §5. Les lois limites fonctionnelles locales sont inspirées de la loi 
fonctionnelle du logarithme itéré démontrée par Strassen (1964) pour le processus de 
Wiener, et sont exposées, notamment dans mes articles [91], [94], [96], [107], [108], [117], 
[120], [125]. J'y établis, entre autres, les théorèmes suivants, cités dans (A)-(B) ci-dessous. On 
suppose que a b  sont des constantes réelles fixées. 
 
(A) Pour tout 0x   fixé, sous l'hypothèse que f  est continue en 0x , et en supposant que 

0,      et  / loglog  lorsque ,n n nh nh nh n n     
on , presque sûrement, 

    
1/ 2 1/2

2
0 0 0liminf ( )  ( ) ( ) ( )  p.s.

2loglog 
n

n n
n

nh
f x f x f x K t dt

n





 
   

 
  

Ici, " " signifie que la formule est vraie aussi bien dans le cas "+" que dans le cas "-". 
 
Ce résultat a été généralisé dans [125] au cas d'une estimation de la densité pour des lois de 
survie. On considère alors le cas où les observations sont des données censurées, traitées par 
la méthode de Kaplan-Meier. Ce problème sera discuté plus loin dans ce même paragraphe. 
La loi limite présentée dans ce dernier article [125] permet de traiter le cas où la densité f  est 
discontinue en 0x , sous réserve qu'elle ait des limites à gauche et à droite en 0x ,  
(éventuellement distinctes). La version multivariée de ce théorème, correspondant à des 
observations 1,..., nX X  à valeurs dans p pour 1p   quelconque, a été obtenue dans [117]. 
Le comportement de nf  dans le cas où / loglog nnh n c   a été également traité dans les 
articles [91], [120], [126] et [138]. 
 
(B) Sous l'hypothèse que f est continue sur un voisinage ouvert de  ,a b , et que, pour une 
constante (éventuellement infinie) 0,c   

    0,  ,  / log ,  log 1/ / loglog 0,  lorsque ,n n n nh nh nh n h n c n        

alors, on a (cf. [108], [138]) 

     
1/ 2

limsup sup ( )  ( )
2 log 1/ +loglog 

n
n n

n a x bn

nh
f x f x

h n  

 
   

 
  



 18

1/ 2
2sup ( ) ( )    p.s.

a x b

f x K t dt


 

   
   

et 

     
1/ 2

liminf sup ( )  ( )
2 log 1/ +loglog 

n
n n

n a x bn

nh
f x f x

h n  

 
   

 
  

1/ 2
2sup ( ) ( )    p.s.

1 a x b

c
f x K t dt

c



 

      

 
Récemment (cf. [141], [144]) j'ai montré que ces propriétés demeurent valides lorsqu'on 
remplace  ,a b  par un intervalle non borné au voisinage duquel f est uniformément continue, 

le noyau K pouvant, quant à lui, être une fonction à variation bornée quelconque sur , au 
support non nécessairement borné. Ces derniers travaux fournissent des extensions, ne 
pouvant plus être améliorées, de résultats anciens de Hall (1991) (ces derniers,  pour 
permettre l'utilisation de noyaux à supports non bornés, établissaient des versions sous-
optimales de ces théorèmes, imposant, notamment l'existence de constantes 1 20 1,c c    
telles que 1 2c c

nn h n   pour les grandes valeurs de n. 
 
Les lois limites fonctionnelles locales qui m'ont permis d'établir ces résultats seront exposées 
plus en détail au §5 ci-dessous. 
 
Plusieurs de mes travaux, de 1973 à 1979, ont concerné les estimateurs séquentiels de la 
densité, c'est à dire, pouvant être calculés sous la forme récursive  
 

  1( ) ( ),n nn nf x R f x X . 

 
En particulier, j'ai établi, dans [5], l'optimalité asymptotique des estimateurs de la forme : 
 


1

1 1

( ) ( ) ( ) ,
n n

i
i i in

i i n

x X
f x h H h H h K

h



 

  
   
   
   

 
pour le choix de ( ) 1/H u u  (estimateur de Yamato-Wolverton-Wagner), dans le cas du 
critère d'optimalité du IMSE (Integrated Mean Square Error), et de ( ) 1H u  , pour le critère 
d'optimalité de la variance minimale asymptotique (voir aussi [4] et [18]). 
 
J'ai  établi dans [85] (en collaboration avec L. Devroye et M. Broniatowski) que le choix de nh  
fourni par la méthode de la validation croisée donnait un estimateur de la densité convergeant 
dans le seul cas où les extrêmes de l'échantillon étaient stables [une suite aléatoire nZ  est dite 
stable s'il existe des constantes na  telles que 

0n nZ a 

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(convergence en probabilité vers 0 lorsque n  ) ]. Ce résultat, qui lie le comportement 
limite d'estimateurs fonctionnels aux proprietés asymptotiques des extrêmes et des 
espacements, s'inscrit dans une logique conceptuelle expliquant les raisons qui m'ont poussé à 
traiter des questions en apparence éloignées les unes des autres. Leur impact a été important 
dans la mesure où la méthode de la validation croisée était, à l’époque de ces travaux, utilisée 
de plus en plus par les praticiens, sur des bases empiriques non fondées, et sans qu'on sache 
pour autant caractériser les situations où elle était inadaptée. 
 
Depuis 1992, j'ai entrepris l'étude d'estimateurs de la densité pour des données de survie 
censurées (qui permet d'estimer le taux de mortalité, appellé aussi taux de panne ou  taux de 
hasard suivant les applications). Le modèle de censure aléatoire considéré est le suivant. Etant 
donné une suite de durées de vie 1,..., nX X , indépendantes de même loi, et une suite de 
temps de censure 1,..., nY Y  indépendants de même loi, on n'observe,  pour i=1,…,n, que les 
valeurs de  min ,i i iZ X Y  et de l'indicatrice  1

i ii X Y  , permettant de savoir si l'observation 

iX  est  censurée ou non par la variable iY . À titre d'exemple, si on étudie le temps de survie 
de patients hospitalisés à la suite d'accidents graves, la censure correspond au cas où 
l'observation se termine à la fin de l'hospitatisation, et lorsque le patient est alors encore en 
vie. Dans ce cas, pour le èmei  patient, iX  désigne la durée de vie du patient (non observée), et 

iY , sa durée d'hospitalisation (observée). 
 
Le problème principal à résoudre est celui d'estimer la loi de probabilité de survie 

 1 ( ) ix X x    , la densité de survie ( ) '( )f x x  , et le taux de mortalité (ou taux de 
panne)  ( ) / 1 ( )f x x , indépendamment de la loi commune inconnue  ( ) iy Y y    des 
temps de censure. On raisonne en général en supposant f et   continues. 
 
L'estimateur le plus classique de ( )x , dû à Kaplan et Meier (1958), est défini par 

*

:1 ,

1
( ) 1 1 ,

( )

i

i

n
i i n Z x n i

x
N Z



  

 
   

 
  

où  1
i ii X Y  , et 

 
1

( ) 1 .
i

n

n Z z
i

N z 


   

On construit à partir de *
n  un estimateur à noyau de f, en posant 

* 1 *( ) ( ),n n n
n

x t
f x h K d t

h

 



 
  

 
   

où (.)K est un noyau du même type que ceux qui sont utilisés pour l'estimation de la densité 
"classique", comme dans la définition de nf  donnée plus haut (au début de ce même §1). On 
notera d'ailleurs que, dans le cas d'observations non censurées, correspondant à des temps de 
censure infinis 1 ... ,nY Y     on a, presque sûrement, *

n n   et *
n nf f , où n  désigne la 

fonction de répartition empirique de 1,..., nX X , définie par 
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 
1

1
( ) 1 .

i

n

n X x
i

x
n 



   

De ce fait, les résultats de convergence obtenus pour les données censurées contiennent 
comme cas particuliers les propriétés analogues du cas classique non censuré. 
 
Récemment, j'ai pu établir dans [125]  (en collaboration avec J. H. J. Einmahl), que si 

0,  ,  / loglog ,  lorsque ,n n nh nh nh n n     
alors, pour tout 0x   tel que 01 ( ) 0,G x   

  
1/21/ 2

* * 20
0 0

0

( )
limsup ( )  ( ) ( )  p.s.

2loglog 1 ( )
n

n n
n

nh f x
f x f x K t dt

n G x





  
         

  

où 

 * 1 0
0 ( ) ( ).n n

n

x t
f x h K dF t

h

 



 
  

 
  

Comme mentionné plus haut, ces résultats couvrent également le cas des estimateurs de la 
densité usuels, dans la mesure où *( ) ( )  ,n nf x f x x   lorsque ( ) 1  ,G x x   choix qui 
correspond à des données non censurées. La version uniforme de ce résultat,décrivant le 
comportement de *( )nf x  lorsque  ,x a b  varie sur un intervalle non réduit à un point, est la 
suivante (cf. [138]). 
 
-- Sous l'hypothèse que f est continue sur un voisinage ouvert de  ,a b , avec ( ) 1,G b   et 
supposant que 

    0,  ,  / log ,  log 1/ / loglog 0, ,  lorsque ,n n n nh nh nh n h n c n        

on a 

  
  

1/ 2

* *limsup sup ( )  ( )
2 log 1/ loglog 

n
n n

n a x bn

nh
f x f x

h n  

     
  

  

1/ 2

2( )
sup ( )   p.s.

1 ( )a x b

f x
K t dt

G x



 

  
     

 , 

et 

  
  

1/ 2

* *liminf sup ( )  ( )
2 log 1/ loglog 

n
n n

n a x bn

nh
f x f x

h n  

     
  

  

1/ 2

2( )
sup ( )   p.s.,

1 1 ( )a x b

c f x
K t dt

c G x



 

  
       

  

Dans [110], j'ai également construit des tests d'homogénéité basés sur plusieurs échantillons 
censurés, et établi les propriétés en permettant l'application pratique. Ces tests permettent de 
comparer entre elles les distributions de survie de chacun des groupes, indépendamment des 
lois des temps de censure. Ils sont aujourd'hui régulièrement utilisés sur des ensembles de 
données biologiques et médicales, afin de vérifier si ces derniers peuvent être agrégés pour 
constituer des échantillons plus importants, permettant des estimations plus précises des 
paramètres d’intérêt. 
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L'étude des estimateurs fonctionnels non paramétriques m'a amené à faire des recherches 
dans plusieurs domaines connexes: les valeurs extrêmes, les processus empiriques, les 
approximations fortes et les espacements. De manière un peu inattendue, ces domaines se 
trouvent être inextricablement liés sur le plan méthodologique. Ce fait, déjà mentionné en 
liaison avec [85], sera illustré plus loin par d'autres exemples. 
 
 
 
4.b. Valeurs extrêmes et lois multivariées. 
 
4.b.a. Lois fortes pour les statistiques d'ordre. 
 
Soient 1, ,...n n nX X   les statistiques d'ordre, obtenues en rangeant par ordre croissant les 

1n   premières observations d'une suite 1,..., nX X  de variables aléatoires indépendantes de 
même loi. Plusieurs de mes travaux ont décrit le comportement limite de telles statistiques 
d'ordre, ou concernent l'étude de processus aléatoires qui leur sont liés. 
 
En particulier, mes premiers travaux de recherche ont été consacrés à l'étude des trajectoires 
du premier temps de passage  ,inf 1:t n nn X t    , à un niveau t donné  de la suite des 

maxima partiels  , : 1n nX n   de 1 2, ,...,X X  (on remarquera que le maximum des n premières 

observations est  , 1max ,...,n n nX X X ). Dans [1] et [2], j'ai établi la propriété que le 

processus  :t t      était à accroissements indépendants. 
 
En faisant usage de ce résultat, j'ai pu établir, dans [1], en 1971, le théorème limite suivant, qui 
résoud un problème ouvert, posé par Grenander en 1965. 
 
Si 1 2, ,...,U U  désigne une suite de variables aléatoires indépendantes de même loi uniforme 
sur (0,1), alors 

 1
1

1
lim min ,..., 1  p.s.

log 

n

n
n

i

U U
n



  

J'ai ensuite généralisé ces résultats au processus  ( )
1,inf  :  ,k

t n k nn k X t      des premiers 

temps de passage à un niveau t donné, de la suite des èmesk  maxima partiels  1, :n k nX n k    

de 1 2, ,...,X X  lorsque 1k   est un entier fixé. Ces travaux  m'ont mené à l'obtention 
d'encadrements presque sûrs pour les processus de premier temps de passage 
 ( ) : .k

t t      Par un procédé simple d'inversion, il est possible d'en déduire des résultats 

analogues pour chacune des suites  1, :n k nX n k   correspondant à des valeurs fixées de 

1,2,... .k   Cependant, cette dernière partie de mes recherches fut rendue partiellement 
caduque par des résultats de Kiefer (1972) et Robbins et Siegmund (1972) pour k=1, puis par 
ceux de Shorack et Wellner (1978), pour 1k   fixé. Ces derniers auteurs ont, en effet, obtenu, 
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par des techniques différentes, des conditions nécessaires et suffisantes portant sur une suite 
 : 1 ,nc n  pour que 

   1, 1,  i.s. 0  (resp. 1), et   i.s. 0  (resp. 1).n k n n n k n nX c X c         

Ici l'abréviation    i.s.nA  signifie que la suite d'événements nA  a lieu « infiniment souvent ». Il 
est possible de montrer  (loi du 0 ou 1) que, pour des événements nA  tels ceux qui sont 
considérés ici,    i.s.nA  ne peut prendre que la valeur 0 ou 1. 

 
Dans le but d'obtenir des caractérisations plus puissantes que celles qui avaient déjà été 
obtenues, je me suis alors attaqué au problème, plus complexe, de l'encadrement presque sûr 
de  1, : 1

nn k nX n    lorsque  : 1nk n   est une suite monotone d'entiers, non nécessairement 

constante, et vérifiant la condition 1 0nn k   lorsque n  . J'ai pu résoudre intégralement 
ce problème en montrant dans [60] et [81] que, sous réserve de conditions générales de 
croissance et de régularité portant sur  : 1nk n  , les résultats suivants sont vérifiés. Je donne 
ci-dessous la version correspondant à des variables aléatoires 1 2, ,...U U  indépendantes et de 
loi uniforme sur (0,1). Cette restriction n'implique d'ailleurs aucune perte de généralité, 
puisqu'on peut écrire l'identité , ,( )i n i nX Q U , pour 1 i n  , où la transformation de 
quantiles Q(.) est définie par  ( ) inf : ( )Q t x F x t   pour 0<t<1, lorsque 1( ) ( ).F x X x     

 
Soient 1, ,...n n nU U   la statistique d'ordre de 1,..., nU U , obtenue en rangeant ces 
observations par ordre croissant. Ici, 1 2, ,...U U , comme ci-dessus, désigne une suite de 
variables aléatoires indépendantes de même loi uniforme sur (0,1). J’ai établi que : 
 
1) Si   /   n n nc k k   , alors 

 1
, . . 0 (resp. 1)

nk n nU n c i s    

 
1

1
 exp  (resp. ).

nk

n
n

n n

c
e c

n k





 
      

 
  

2) Si   /   n n nc k k   , alors 

 1
, . . 0 (resp. =1)

nk n nU n c i s   

  
n=1

1
 exp  (resp. ).

nk

n
n

n

c
e c

n k

  
      

 
  

Ces résultats ([60], [81]) sont optimaux au sens qu'ils ne pourraient être éventuellement 
améliorés qu'en affaiblissant les conditions de régularité et de monotonie supposés sur nk . Ils 
comprennent comme cas particuliers les critères de Barndorff-Nielsen (1961), de Robbins et 
Siegmund (1972), Kiefer (1972) et de Shorack et Wellner (1978). Enfin, ils présentent la 
particularité de faire intervenir la même série pour caractériser les encadrements inférieurs et 
supérieurs. 
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Mes recherches, portant sur les lois fortes de statistiques d'ordre (ou de quantiles) ont été 
poursuivies dans plusieurs directions, comprenant l'étude des statistiques de queue, des 
processus empiriques de queue, des statistiques locales, des processus empiriques locaux et 
des records. 
 
4.b.b. Records. 
 
Les records classiques, pour une suite de variables aléatoires 1 2, ,...X X  sont définis comme 
suit. Soit 1, ,...n n nX X   la statistique d'ordre de 1,..., nX X , obtenue en rangeant ces 
observations par ordre croissant. Posons, par convention, 0,0X   . Pour chaque valeur de 

l'entier 1j  , le èmej temps de record (ou temps de 1-record) (1)
jn  est la plus petite valeur de 

l'entier 1n   pour laquelle on observe, pour la èmej  fois consécutive, l'événement 

, 1, 1m m m mX X   , pour m variant de 1 à n. La èmej  valeur de record (ou valeur de 1-record) (1)
jR  

désigne alors la valeur prise par ,n nX  pour la valeur de n donnée par (1)
jn n . 

 
On définit, pour 1k   fixé, la suite ( ) ( ) ( )

1 2 ... ...k k k
jn k n n      des temps de k-records 

comme l'ensemble ordonné des indices n k  tels que 1, , 1n k n n k nX X    , et la èmej valeur de 
k-records, ( )k

jR , comme la valeur obtenue en posant ( )
1,

k
j n k nR X    pour la valeur de n 

correspondant à ( )k
jn n . 

 
L'étude de la suite double des temps et valeurs de k-records   ( ) ( ), : 1 ,k k

j jn R j   qui se 

ramène 
à l'étude de la trajectoire du èmek  maximum de la suite  1, : ,n k nX n k    a fait l'objet de très 

nombreux travaux, initiés par les recherches originales de Chandler (1952) et Rényi (1970). 
Lorsque les observations 1 2, ,...,X X  sont indépendantes et de même loi, de fonction de 
répartition continue  1( ) ,F x X x   la loi des temps de records ne dépend pas de F, 

tandis que celle des valeurs de records ne dépend de F que par le biais d'un changement 
d'échelle. Il est alors commode de se ramener au cas de la loi exponentielle standard, pour 
laquelle  1( ) 1 xF x X x e    pour 0.x   Nous supposerons par la suite que cette 

dernière hypothèse est satisfaite. 
 
Dans la période 1981-1986, j'ai pu établir des résultats définitifs ([29], [32], [33], [35], [39], 
[40], [49], [50], [73]) sur l'approximation forte optimale des temps de records et des valeurs 
de records, à l'aide de processus de Wiener. C'est ainsi, entre autres, que j'ai montré que, 
pour 1k   fixé, il était possible de construire (sur un espace de probabilités convenable) un 
processus de Wiener (ou mouvement Brownien unidimensionnel) standard  ( ) : 0W t t   tel 

que la suite des temps de k-records,  ( ) : 1 ,k
jn j   vérifie 

 ( ) 1
exp ( ) log    p.s.,  lorsque  .k

j

j
n W j O j j

k k
     
 
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Ce résultat est obtenu avec une vitesse d'approximation optimale, au sens que le " (log )O j " 
ne peut être remplacé par un " (log )o j ". Il permet de ramener l'étude des fluctuations des 
temps de k-records à celle des fluctuations du processus de Wiener. 
 
En 1983, j'ai démontré (cf. [40]) (sous l'hypothèse d'une loi exponentielle standard, comme ci-
dessus, avec  1( ) 1  pour 0xF x X x e x     ) que les processus ponctuels 

 ( ) : 0 ,  1, 2,...,kN t t k   ayant pour temps d'arrivée    ( ) ( 1): 1 : 1 ,k k
j jR j R j    avec la 

convention que  (0) : 1 ,jR j    composent, 1,2,...,k   une suite de processus de Poisson 

indépendants de même loi. J'ai appris ensuite que ce résultat avait été annoncé 
indépendamment, mais sans démonstration par Ignatov (1978). J'en ai donc obtenu la 
première démonstration publiée. Depuis, ce  théorème a été établi à nouveau par d'autres 
méthodes (voir par ex. Goldie et Rogers (1984), Vervaat, (1986)). 
 
Dans [51], j'ai montré que, l'indépendance des variables de la suite  ( ) ( )

1 : 2 ,k k
j jR R j   pour 

une valeur de 1k   donnée, caractérisait la loi exponentielle (au sens que cette propriété 
équivaut à ce que l'on ait     1 1 exp   ,X x x x          pour des valeurs 

convenables de >0 et    ). Ceci m'a permis d'unifier tout un ensemble de résultats 
disparates déjà établis sur le sujet dans la littérature scientifique consacrée à la caractérisation 
des lois de probabilité. 
 
Plus récemment, j'ai obtenu dans [112] et [115] (en collaboration avec V. B. Nevzorov), les 
extensions de ces résultats d'approximation forte à un contexte considérablement plus 
général, et ceci, par une nouvelle technique. C'est ainsi que j'ai démontré des théorèmes 
d'approximation forte, d'une part, pour les èmes

nk  temps de record, correspondant au 
remplacement de l'entier 1k   fixé ci-dessus par une suite d'entiers  : 1 ,nk n   et d'autre 

part, dans le cadre (voir [131]) de records basés sur des observations  : 1 ,nX n   

indépendantes, mais dont la loi  ( )n nF x X x   varie avec n. On suppose ici que nF  est de 

la forme ,n
nF F  où F désigne une loi de répartition fixe, et  : 1 ,n n  une suite d'entiers 

positifs. Il s'agit du " F - scheme", introduit par V. B. Nevzorov (1986).  
 
Ce modèle est le seul pour lequel  les indicatrices  1, 1

1 ,
n n nX X  

 des événements que n  est un 

temps de record, composent une suite de variables aléatoires indépendantes. Pour mémoire, 
le fait que les indicatrices des temps de record  1, 1

1
n n nX X  

soient indépendantes dans le cas 

d'une suite  , 1nX n   de variables aléatoires indépendantes de même fonction de 
répartition continue F,  a été pour la première fois mis en évidence par A. Rényi (1962). Cette 
dernière situation correspond au cas particulier de " F - scheme" obtenu pour 

1,   1.n n     Dans [136] (avec V. B. Nevzorov) j'étudie des propriétés de rééchantillonnage 
par bootstrap de la suite de ces records. 
 
4.b.c. Extrêmes Multivariés. 
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Dans une série d'articles publiés à partir de 1978, je me suis intéressé aux lois limites pour les 
extrêmes multivariés, ce qui revient  à étudier, pour 1p   fixé, la convergence en loi lorsque 

,n   du vecteur aléatoire 

(1) (1) ( ) ( )
,..., ,

(1) ( )
n n n n

n
n n

Y b Y p b p
V

a a p

  
  
 

 

où, pour 1,..., ,j p   1( ) max ( ),..., ( ) ,n nY j X j X j  et   (1),..., ( ) : 1n nX X p n   désigne une 

suite de vecteurs aléatoires indépendants de même loi à valeurs dans .p  Pour chaque choix 
de 1,..., ,j p  ( ) 0  et  ( ),n na j b j  pour 1,2,...,n   désignent des suites de constantes réelles 
choisies de telle sorte que nV  converge en loi, lorsque ,n   vers une loi limite dans p  à 
marges non dégénérées. Le problème est alors de déterminer la structure des lois limites ainsi 
obtenues. 
 
J'ai  caractérisé, dans [13], [15], [16], [23], [48], l'ensemble de toutes les lois limites possibles 
pouvant être générées par ce modèle. Ces résultats ont généralisé au cas 3p   des travaux 
antérieurs de Geffroy (1958), Sibuya (1960) et Tiago de Oliveira (1961), obtenus dans le cas 
particulier de 2.p   Le résultat pour 1p   avait été décrit bien antérieurement, dans un 
ensemble de travaux, dûs à Fréchet, Weibull et Gendenko, et réalisés de 1923 à 1943. 
 
La structure particulière de ces lois limites multivariées a toutes sortes de propriétés 
remarquables. L'étude de celles-ci m'a permis, notamment, d'introduire, dans [38], les 
processus appellés depuis max-stables. 
 
Ces recherches m'ont amené à étudier de manière approfondie les copules ou fonctions de 
dépendance. Il semble, en particulier, que je sois le premier à avoir démontré, dans [14], 
l'existence, quelle que soit la fonction de répartition multivariée  1,..., pF x x  admettant pour 

marges ( ) ( ,..., , , ,..., ),    pour   1,..., ,j j jF x F x j p       d'une copule 1( ,..., ),pC u u  fonction 

de répartition d'un vecteur aléatoire à marges uniformes sur  0,1 ,  telle que 

 1 1 1( ( ),..., ( )) ,..., ,p p pC F x F x F x x  

en tout point de continuité. Ce résultat est loin d'être trivial lorsque F et 2p   sont 
quelconques. Il est naturel d'utiliser également une telle construction lorque F est la fonction 
de répartition empirique d'un échantillon. Ceci sera évoqué plus loin dans le §2d. 
 
L'estimation des lois extrêmes multivariées a fait l'objet des articles [22], [48], [86] (en 
collaboration avec J. Tiago de Oliveira), et [97], où je décris le comportement limite 
d'estimateurs de la loi jointe d'extrêmes bivariés, dûs à Pickands (1981). Ces recherches sont 
actuellement développées afin d'appliquer de tels résultats limites pour obtenir la loi de 
probabilité de tests d'ajustement du type Cramér-Von Mises ([125], [146]) (voir le §2d). 
 
4.b.d. Copules et tests d'indépendance. 
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La fonction de dépendance empirique (ou copule empirique) est une fonction de répartition 

nC  dans d , à lois marginales uniformes sur  0,1 , qui vérifie l'identité 

 ,1 1 , 1( ( ),..., ( )) ,..., ,n n n d d n dC F x F x F x x  

où nF  désigne la fonction de répartition empirique d'un échantillon de taille n dans ,d  de 
fonctions de répartition marginales 

, ( ) ( ,..., , , ,..., ),    pour   1,..., .n j j n jF x F x j d       
J'ai entrepris dans [13], [14], [19], [20], [22], [24], [27], [28] l'étude des propriétés limites de 

.nC  Un exemple des résultats ainsi obtenus est la détermination, dans [26], de la loi exacte, 
pour 1d   quelconque, de la statistique de Cramér-Von Mises multivariée, définie par 

      
22

1 1 1,..., ,..., ,..., ,
d

n n d d n dT F x x F x x dF x x 


 

où  1,..., dF x x  désigne la fonction de répartition exacte de la variable générique dans d , 

qui engendre un échantillon de taille 1,n   lequel a pour fonction de répartition empirique 
 1,..., .n dF x x  

 
La caractérisation de la loi limite de 2

nT  lorsque n   n'était jusque là connue que pour d=1, 
(Von Mises (1933)), et pour d=2 (Blum, Kiefer et Rosenblatt (1961)). Plus récemment, des 
travaux entrepris avec G. Martynov, m'ont permis d'établir des tabulations précises des lois 
asymptotiques de statistiques type Cramér-Von Mises ([125]) ces dernières étant d'un intérêt 
tout particulier pour les données multivariées (cf. §2c). 
 
Ces recherches ont permis d'obtenir des résultats assez spectaculaires dans l'étude du 
processus défini par 

1

/ /1
( ) min , 1   pour  0 1,

1

n
n ni i

n
i

X X Y Y
Z u u

u un 

            
  

avec 

1 1

1 1
,   ,

n n

n ni i
i i

X X Y Y
n n 

    

et où   , : 1n nX Y n  est une suite de vecteurs aléatoires indépendants, à valeurs dans 2 ,  et 

telles que, pour 1,n   et des constantes convenables 0  et  0,    

    , exp -    pour   , 0.n nX x Y y x y x y       

Dans [97] et [146] (pour ce dernier article, en collaboration avec G. Martynov), j'établis la 
convergence en loi de ce processus vers un processus gaussien centré  ( ) : 0 1 .Z u u   

J'obtiens, en particulier, la décomposition de Karhunen-Loeve explicite de  ( ) : 0 1 ,Z u u   
en faisant intervenir les valeurs propres de l'équation de Fredholm associée au noyau de 
covariance. Ces dernières sont données par 

6
  pour   1, 2,...

( 1)( 2)( 3)k k
k k k k

  
  
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Les fonctions propres associées s'expriment directement et explicitement à partir de 
polynômes de Jacobi. Ce résultat permet, entre autres, d'établir la convergence en loi, lorsque 

,n   
1 1d2 2 2

0 0
1

( )   ( ) ,n k k
k

Z t dt Z t dt  




    

où  : 1k k   désigne une suite de variables aléatoires normales (0,1)N  standard. Ceci 
permet de tabuler la distribution correspondante et de construire ainsi un test 
d'indépendance des paires exponentielles   , : 1 .n nX Y n   De plus, c'est un des rares 

exemples connus où une telle décomposition est explicite pour un processus gaussien d'intérêt 
statistique. Les autres cas concernent le processus de Wiener, le pont brownien, le processus 
d'Ornstein-Uhlenbeck, et surtout le processus d'Anderson et Darling (1952), défini par 

( ) / (1 ),B u u u  où  ( ) : 0 1B u u   est un pont brownien. Dans ce dernier cas, les valeurs 
propres sont données par 

1
  pour   1, 2,...,

( 1)k k
k k

  


 

et les fonctions propres sont aussi des polynômes de Jacobi. Je travaille actuellement à montrer 
que ces résultats peuvent être unifiés et généralisés en faisant usage de la théorie de la 
représentation des groupes, où les polynômes de Jacobi interviennent directement. 
 
4.b.e. Tests d'ajustement. 
 
Dans [34] et [36], j'ai établi que certains tests d'ajustement proposés par E. Parzen en 1979 
pour vérifier des hypothèses sur une loi de probabilité, indépendamment de ses paramètres 
de location et de dispersion, avaient une loi limite basée sur le pont Brownien, si et seulement 
si la loi de l'échantillon était uniforme, exponentielle, ou exponentielle après un retournement 
d'échelle. Cette propriété s'exprime sur le pont Brownien  ( ) : 0 1B u u  , en constatant que 

1

0 0
( ) ( ) ( ) ( ) ( ) ( )

u
I u B u B v v dv u B v v dv      

est un pont Brownien, si et seulement si ( )u  est égal à 1, 1/ ,u  1/(1 ),u ou une combinaison 
de ces fonctions. 
 
Dans un tout autre ordre d'idées, j'ai développé la théorie asymptotique des méthodes de 
comparaison non-paramétriques de deux échantillons 1,..., nX X  et 1,..., nY Y , de fonctions de 
répartition empiriques  1( ) # :1n iH x n X x i n     et  1( ) # :1 ,n iK x n Y x i n     et 

de fonctions de quantiles  1( ) inf : ( )n nH s x H x s    et  1( ) inf : ( ) .n nK s x K x s    Ces 

comparaisons sont basées sur les P-P et Q-Q plots, ces derniers étant, par définition, les 
statistiques 

   1 1( )    et   ( ) .n n n nK H s K H s   

J'ai obtenu les lois limites de tests basés sur ces statistiques, ainsi que des principes d'invariance 
forts dans [82] (avec D. M. Mason), [89] (avec J. Beirlant) et [109], pour le processus de 
Kaplan-Meier (avec J. H. J. Einmahl). 
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4.c. Approximation de Poisson. 
 
Depuis les travaux fondamentaux de Poisson au XIXème siècle, l'étude de l'approximation de la 
loi L(Sn) de la somme partielle Sn = X1+...+Xn d'ordre n d'une suite de variables indépendantes 
X1,X2,..., de Bernoulli, telles que, pour n=1,2,..., 
 

P(Xn=1) = 1 - P(Xn =0) = pn   [0,1], 
 
par la loi ∏(μn) = L(Tn) d'une variable de Poisson Tn, telle que, pour n=1,2,..., 
 

P(Tn=k) = 
!k

k
n exp(- n) pour k=0,1,..., 

où  n = p1+...+pn, est resté une question classique du calcul des probabilité, d'une importance 
comparable à celle du théorème central limite (convergence vers la loi de Laplace-Gauss), 
dont la résolution était, cependant, restée incomplète. Il peut paraître donc surprenant que la 
détermination précise de la vitesse exacte de convergence en loi de L(Sn) vers L(Tn) (la loi de 
Poisson) n'ait pu être déterminée qu'au cours de la décennie 1980-90, et ce, malgré 
l'ancienneté du problème. 
 
Pour mesurer la distance entre les lois L(Sn) et L(Tn), il est commode d'utiliser des métriques 
probabilistes telles que  la distance en variation 

        , sup .V n n n n
A

d L S L T S A T A


   

   

J'ai pu apporter, dans une série de travaux ([62], [64], [69], [77], [78], [79], [80], [84], [103]), 
en collaboration avec A. Karr, R. Serfling, et  D. Pfeifer, une solution presque complète au 
problème de l'évaluation asymptotique et à distance finie de ,Vd  et ce, par une technique 
originale, basée sur les semigroupes d'opérateurs dans les espaces de Banach. 
Antérieurement, l'évaluation de ,Vd  pour le choix de     1 ... ,n n n nT S p p        avait 
fait l'objet de nombreux travaux. Par exemple, en 1960, L. Le Cam avait obtenu la borne 
supérieure 

   2
1

1

( ), ( ) min ,max ,..., .
n

V n n i n
i

d L S L T p p p


 
  

 
  

En 1984, Barbour et Hall précisèrent cette borne en obtenant l'inégalité 

 
1

2

1 1 1

( ), ( ) 1 exp .
n n n

V n n i i i
i i i

d L S L T p p p


  

    
      
    
    

J'ai obtenu une évaluation asymptotique exacte de cette distance, en montrant, en particulier, 
dans les travaux  [62] et [80], cités plus haut, que 

 ( ), ( ) .V n n V Vd L S L T D r   
Dans cette expression, le terme principal VD  est égal à 

1 1
2

1

1 ( ) ( )
,

2 ! !

a bn

V i
i

a b
D p

a b

    



   
   

  
  

où 
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2 2

1

1 1 1 1
,  ,   ,

2 4 2 4

n

n i
i

p a b     


                     
         

  

et 1u u u          désigne la partie entière de u. 
 
Le terme résiduel rV de l'expression ci-dessus est asymptotiquement négligeable relativement 
à DV, et peut être évalué à l'aide de développements, ou, plus simplement, borné 
supérieurement. L'une de ces bornes, donnée dans [80] (en collaboration avec D. Pfeifer), 
montre que 

 3/ 2

2

1 1

2 1
   lorsque   / .

22 1 2

n n

V i i
i i

r p p



  

   
         

   

Par exemple, lorsque 
2

1 1 1

/ 0  et  ,
n n n

i i n i
i i i

p p p
  

   
     

   
    

ces résultats permettent d'obtenir l'équivalent asymptotique (cf. [62]) remarquable 

     2

1 1

1 (1)
, /

2

n n

V n n i i
i i

o
d L S L T p p

e  

    
    

   
  , 

qui améliore du facteur multiplicatif 1/ 2 e  la borne de Barbour et Hall (1984). 
 
J'ai également obtenu des évaluations analogues en remplaçant la distance en variation par 
d'autres métriques mesurant les distances entre lois de probabilité. Parmi celles-ci, il faut 
mentionner les distances de Kolmogorov, de Fortet-Mourier, et la catégorie générale formée 
par les distances de Wasserstein. 
 
Dans le cas particulier de la distance de Kolmogorov, définie ici par 

     ( ), ( ) sup ,K n n n n
x

d L S L T S x T x
 

      

j'ai montré, dans [80] et [84], (avec D. Pfeifer, M. Puri et S. Ralescu) que, si nZ  désigne une 
variable aléatoire normale, de paramètres 

1 1

, (1 ) ,
n n

i i i
i i

N p p p
 

 
 

 
   

où 
1

n

i
i

p

 désigne l'espérance, et 

1

(1 )
n

i i
i

p p


  la variance, et si 

1/ 2

2 2

1 1 1 1 1

/ 0,   ,   et  / ,
n n n n n

i i i i i
i i i i i

p p p p p 
    

       
         

       
      

on a alors, pour tout n suffisamment grand, 
       ( ), ( ) ( ), ( ) ,  resp. ( ), ( ) ( ), ( ) ,K n n K n n K n n K n nd L S L T d L S L Z d L S L T d L S L Z   

lorsque α vérifie 
2 ,  resp.  2  ,      

où =0.2784...  est solution de l'équation 1 log 0.x x     
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Ces résultats permettent de tracer une frontière précise entre le cas ou l'approximation 
normale est meilleure que l'approximation Poissonienne de celui où l'inverse a lieu (ceci, pour 
l'approximation de la loi de sommes de variables de Bernoulli vis à vis du critère donné par 
par la distance de Kolmogorov). 
 
Les méthodes basées sur l'approximation de Poisson fournissent un outil particulièrement 
puissant sur le plan théorique, dans l'étude des processus empiriques. D'un point de vue 
pratique, ces techniques sont également extrêmement utiles pour analyser les événements 
rares, en fiabilité. Soit, par exemple, un équipement industriel possédant un (grand) nombre n 
de composants indépendants ayant des probabilités individuelles ,  1,..., ,ip i n  de 
défaillance, très petites, dans une période donnée. Le nombre de défaillances pouvant être 
enregistrées est alors une variable aléatoire nS  qui se trouve être une somme d'indicatrices de 
Bernoulli comme ci-dessus. Le calcul de la distribution exacte de nS  est très long et difficile 
lorsque le nombre des composants est élevé, et les ip  non-identiques. Par contre, 
l'approximation de la loi de nS  par une loi de Poisson est facile, car il suffit de sommer les 
probabilités individuelles de défaillance pour en obtenir le paramètre. 
 
Bien entendu, une telle approximation ne peut être utilisée que si on en maîtrise bien le terme 
d'erreur, ce qui motive les recherches précédentes, dont les résultats sont utilisés tant dans 
des modèles actuariels (par exemple, pour les calculs de primes pour les équipements 
pétroliers "off-shore"), que dans des modèles industriels (étude des défaillances de grands 
équipements). 
 
4.d. Processus de sommes partielles et de renouvellement. 
 
Soit  : 1nX n   une suite de variables aléatoires centrées, de variance égale à 1, 
indépendantes et de même loi. Pour 0,t   on désigne par  

1
( ) ,

t

ii
S t X

  


   

le processus de sommes partielles associé à cette suite (ici, 1t t t          désigne la partie 

entière de t, et   0


  ). Sous réserve d'existence, au voisinage de 0, de la fonction 

génératrice des moments   1( ) exp ,t tX    le théorème d’approximation forte de Komlós, 

Major et Tusnády (1975, 1976) montre qu'on peut construire, sur un espace de probabilités 
convenable, un processus de Wiener standard  ( ) : 0 ,W t t   de telle sorte que 

( ) ( ) (log ) p.s. lorsque .S t W t O t t    

Pour une suite de constantes  positives  : 1 ,nk n   considérons les accroissements maximaux 

   *

0 0
( ) sup ( ) ( )    et   ( ) sup ( ) ( ) .

n n

n n n n n n
t n k t n k

I k S t k S t I k W t k W t
     

       

La vitesse d'approximation de ( )S t  par ( )W t  montre que, lorsque / log ,nk n   le 
comportement, au premier ordre, de ( )n nI k  s'apparente à celui de l'expression analogue 

*( ),n nI k  obtenue en remplaçant (.),S  par le processus de Wiener (.).W  Par contre, lorsque 
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/ log ,nk n c   cette propriété n'est plus satisfaite, puisqu'il est alors possible de montrer 
que 1 ( )n n nk I k  converge vers presque sûrement vers  inf 0 : ( ) 1/ ,x x c      où 

 
: ( )

( ) sup log ( )
t t

x tx t





    

est la fonction de Chernoff (ou transformée de Legendre) associée à la loi commune des 
,  1, 2,...,iX i   par l'intermédiaire de sa transformée de Laplace   ( ) exp .t tX    

 
Ce résultat, dont une version a été mise en évidence pour la première fois par Shepp 
(1964),est aujourd'hui connu sous le nom de théorème d'Erdős-Rényi (1970). J'ai consacré une 
part significative de mes travaux ([53], [58], [59], [65], [66], [74], [83], [90], [101]) (avec, 
notamment, L. Devroye, J. Lynch, J. Steinebach, P.Erdős et P. Révész) à l'étude de ce théorème 
et des questions qui lui sont apparentées, relevant de l'étude générale des fluctuations de 
sommes partielles de variables aléatoires indépendantes. J'ai, en particulier, obtenu en 1986-
87, dans [53] et [67], la forme complète du théorème d'Erdős-Rényi (celui-ci n'avait été établi 
antérieurement qu'avec des restrictions sur la valeur de 0c  ), ainsi que la solution du 
problème, lontemps resté ouvert, de la détermination de la vitesse de convergence de cette 
loi limite. Dans [101], j'ai obtenu la forme générale du théorème d'Erdős-Rényi fonctionnel, en 
établissant que l'ensemble   1 ( ) ( ) : 0n n nk S t k s S t t n k      , de fonctions de  0,1 ,s  

converge, dans une topologie convenable, vers un ensemble limite de fonctions sur  0,1 ,  

dont j’obtiens également la caractérisation. Dans le cas où ( ) /u u   lorsque ,u   ce 
résultat (également obtenu dans ce cas particulier par Borovkov (1991) et  Sanchis (1994)) 
donne un ensemble limite qui n'est autre que la boule unité d'un espace d'Orlicz. Celle-ci est 
composée (pour un choix d’échelle convenable) de l'ensemble des fonctions absolument 
continues de la forme 

   1 1

0 0
( ) ( ) ,   pour  0,1 ,   avec  ( ) 1,

s
f s f u du s c c f u du       

où ( ) ( )
d

f t f t
dt

 désigne la dérivée de Lebesgue de f. 

 
Ces recherches ont débouché sur l'étude systématique des processus empiriques locaux (voir 
les §5-6) et de queue, à l'aide de lois fonctionnelles et de techniques basées sur les grandes 
déviations. 
 
4.e. Processus empiriques. 
 
Etant donné une suite 1 2, ,...,U U  de variables aléatoires indépendantes de loi uniforme sur 

 0,1 ,  on définit, pour 1,n   la fonction de répartition empirique uniforme par 

 1( ) # :1    pour   ,n iF x n U x i n x      
où #E  désigne le nombre d'éléments (ou la cardinalité) de E. On définit la fonction empirique 
de quantile uniforme par la formule: 

 ( ) inf 0 : ( )    pour   0 1.n nG t s F s t t      
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Le  processus empirique uniforme n  et le processus de quantile uniforme n  sont alors 
définis respectivement par 

   1/ 2 1/ 2( ) ( )    et   ( ) ( )    pour   0 1.n n n nt n F t t t n G t t t        
Une partie importante de mes travaux concerne l'étude des propriétés asymptotiques de ces 
processus. Les principaux résultats que j’ai obtenus sont détaillés dans les paragraphes ci-
dessous. 
 
4.e.a. Représentation de Bahadur-Kiefer. 
 
En 1990, avec D. M. Mason, j'ai résolu, dans [88], la conjecture de Kiefer, restée ouverte depuis 
1970. Pour énoncer ce résultat, posons, pour toute fonction g, bornée sur [0,1], 

0 1
sup ( ) .

t
g g t

 
  Bahadur (1966), et Kiefer (1967, 1970), ont montré que: 

 
(i) Pour tout  0 0,1t   fixé, 

    1/ 41/ 4 3/ 4 1/ 2 3/ 4
0 0 0 0limsup (2loglog ) ( ) ( ) 1 2 3    p.s.n n

n
n n t t t t  


    

(ii) On a 
 1/ 4 3/ 4 1/ 4limsup (2loglog ) 2    p.s.n n

n
n n   


   

(iii) On a 

1/ 4 1/ 2
1/ 2lim (log ) 1   en probabilité.n n

n
n

n n
 






    
  

 

Kiefer (1970) a émis la conjecture que la limite (iii) avait lieu presque sûrement. J'ai démontré 
([88]) (avec D. Mason) que c'était effectivement le cas. Cette propriété permet alors de 
ramener la démonstration de (ii) à celle de la loi du logarithme itéré de Chung (1948), c'est à 
dire, au fait que 

 1/ 2 1/ 2limsup (loglog ) 2    p.s.n
n

n  


  

Dans une série d'articles ( [82], [88], [93], [99], [100], [105], [106]), écrits pour partie avec J. 
Beirlant, D. Mason, J. H. J. Einmahl et J. Steinebach, j'ai pu développer ces résultats et les 
étendre à d'autre processus tels que le processus de sommes partielles, le processus de 
renouvellement, le processus de Kaplan-Meier et les processus empirique et de quantiles 
associés aux espacements. 
 
Par exemple, dans un travail récent ([117]), avec D. Mason, j'ai pu élucider le mystère de la 
constante bizarre 1/ 2 3/ 42 3  qui apparaît dans le membre de droite de (i). Grâce à une nouvelle 
démonstration de cette propriété, basée sur une loi fonctionnelle du logarithme itéré, il a été 
possible d'en expliquer que l'origine, se ramenait la formule simple 

 2 1/ 2 3/ 4

0 1
sup 1 2 3 .

x
s s 

 
   

Les résultats ci-dessus sont intimement liés à l'étude des modules de continuité de  et .n n   
 
4.e.b. Lois limites fonctionnelles locales. 
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Le comportement des fluctuations locales du processus empirique uniforme n  et du 
processus empirique uniforme de quantiles n  a fait l'objet d'une grande partie de mes 
travaux récents. Dès (1984), j'avais décrit, dans [44] avec L. Devroye, le comportement 
presque sûr des nk -espacements uniformes pour (log ),nk O n  ce qui se ramène à l'étude 
des incréments d'ordre 1

nn k  du processus empirique de quantiles uniforme 

 ( ) : 0 1 .n t t    Depuis 1988, j'ai entrepris l'étude plus systématique de ces quantités, à 

l'aide, principalement, de lois fonctionnelles limites. 
 
Considérons une suite de constantes positives  : 1 ,nh n   vérifiant 

      0 1,    0,    ,    / log 0, ,    log 1/ / loglog 0, .n n n n nh h nh nh n c h n d            

On considère les ensembles aléatoires de fonctions définis par 

   
 

: 0 1 ,
2 log 1/

n n n
n n

n n

t h I t
t h

h h

        
  

E  

où ( )I t t  désigne la fonction identité définie sur [0,1], et 

   
 

: 0 1 .
2 log 1/

n n n
n n

n n

t h I t
t h

h h

        
  

F  

Désignons par ,  l'ensemble des fonctions f, définies dans  0,1 ,  telles que (0) 0,f   et 

absolument continues, de dérivées de Lebesgue f  telles que 

 1/ 21 2

0
( ) 1.f f t dt    

Cet ensemble n'est autre que la boule unité de l'espace de Hilbert à noyau autoreproduisant 
associé à la fonction de covariance du processus de Wiener, utilisée par Strassen (1964) dans 
la loi fonctionnelle du logarithme itéré. Avec la notation 

0 1
sup ( ) ,

t
g g t

 
  posons, pour toute 

partie A, non vide de l'ensemble  0,1B  des fonctions bornées sur  0,1 ,  

  0,1 : , .A f B g A f g        

Enfin, si  0,1 ,A B et  0,1 ,B B  on définit la distance de Hausdorff entre A et B, par 

   , inf 0 :   et  ,A B A B B A       

si un tel 0   existe, et  ,A B    autrement. Dans [108] (avec D. M. Mason), j'ai montré 
que, sous ces hypothèses, lorsque ,c d    

   lim , lim , 0   p.s.
n n 

    n nG F  

Le comportement de ces suites lorsque   ou  c d     est décrit dans [107], [108], [120], 
[126], [167]. 
 
Lorsque  0 0,1t   est fixé, le processus empirique local en 0t  est défini par la suite 

 0 0( ) ( )
  pour   0,1 .

2 loglog 
n n n

n

t h s t
s

h n

  
  



 34

On suppose que 
 0,    ,    / loglog 0, .n n nh nh nh n r       

Dans [91] (avec D. M. Mason), j'ai décrit le comportement presque sûr de  nf , en montrant 
notamment que cette suite était presque sûrement relativement compacte dans l’ensemble 
 0,1B  des fonctions bornées sur  0,1 , muni de la topologie uniforme. De plus, j’ai établi que, 

pour ,r    l'ensemble limite s'exprimait comme la boule unité d'un certain espace d'Orlicz. 
 
Récemment, dans [137], j'ai montré que, pour toute fonction f de l'ensemble de Strassen, i.e. 
telle que (0) 0,f   avec 

 1/ 21 2

0
( ) 1,f f t dt    

où ( ) ( )
d

f t f t
dt

  est la dérivée de Lebesgue de f, et, pour toute suite  : 1nh n   telle que 

0,    ,    / loglog ,n n nh nh nh n     
on a, en notant 

0 1
sup ( ) ,

t
g g t

 
  

2

( )
lim inf (2loglog )    p.s.

2 loglog 2 1

n n

n
n

h
n f

h n f

 


 



�


 

Dans [117], [120], [143], les résultats correspondant au processus empirique n  sont 
generalisés au cas de variables aléatoires à valeurs dans d , pour des processus indexés par 
des fonctions ou par des ensembles. Ces travaux permettent de décrire, par des corollaires 
simples de théorèmes généraux, le comportement presque sûr d'un très grand nombre de 
statistiques non paramétriques locales (telles que développées dans le cadre de l'estimation 
non paramétrique de la densité, cf. §). Nous traitons plus en détail dans ce qui suit le cas 
particulier de l'étude des statistiques des queues de distribution. 
 
4.e.c. Approximation forte et fluctuations du processus des quantiles. 
 
Dans l’article récent [129], j'ai montré que lecomportement asymptotique du processus 
empirique local de quantiles, basé sur ,n  pouvait différer très notablement de celui du 
processus empirique local basé sur n . Le résultat s'énonce comme suit. Fixons 

 0 0,1 .t  Considérons la suite de fonctions de  0,1 ,s  définie par 

   0 0( ) ,
1

2 log loglog 

n n n
n

n

n

t h s t
g s

h n
h n

 



 


         

 

où   log log max , .u u e   Alors, sous des hypothèses générales de comportement et de 

régularité portant sur  : 1 ,nh n   supposant, en particulier, que / log  ,nnh n   la suite 

 : 1ng n   est presque sûrement relativement compacte dans l'espace des fonctions bornées 
muni de la topologie uniforme, et a pour ensemble limite l'ensemble de Strassen (défini plus 
haut au §5b). Il est remarquable que ce résultat diffère de celui qui serait obtenu, soit pour 
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0 0,t   soit en remplaçant  par .n n   Dans chacun de ces cas, le terme   +log 1/ nh n  

disparaît. 
 
Une application directe de cette propriété montre que, pour tout processus de Kiefer 
 ( , ) : 0,0 1 ,K s t s t    et pour tout 0,   on a 

   1/ 4 1/ 2

0 1
limsup  log sup ( ) ( , )  p.s.n

n t
n n t n K n t

  

  
    

L'approximation des processus empiriques et de quantiles uniformes par des processus de 
Kiefer est d'une importance particulière en statistique asymptotique. Un processus de Kiefer 

( , )K n t  est une somme 

1

( , ) ( )
n

i
i

K n t B t


  

de ponts browniens ( ) ( ) (1),i i iB t W t tW  indépendants (construite à partir d'une suite de 
processus de Wiener  ( ) : 0 ,  1, 2,...,iW t t i   indépendants). La meilleure vitesse connue 
d'approximation du processus empirique par un processus de Kiefer est due à Komlós, Major 
et Tusnády (1975). Ils ont établi que, (sur un espace de probabilités convenable, et pour un 
processus de Kiefer ( , )K n t  approprié), lorsque ,n   

 1/ 2 1/ 2 2

0 1
sup ( ) ( , ) log    p.s.n

t
t n K n t O n n  

 
   

En ce qui concerne le processus des quantiles, le meilleur résultat connu est dû à Csörgő et 
Révész (1975,1976) qui ont montré que (sur un espace de probabilités convenable, et pour un 
processus de Kiefer ( , )K n t  approprié), lorsque ,n   

    1/ 2 1/ 41/ 2 1/ 4

0 1
sup ( ) ( , ) log loglog    p.s.n

t
t n K n t O n n n  

 
   

Csörgő et Révész (1975,1976) ont émis la  conjecture que le meilleur ordre possible 
d'approximation uniforme de  ( )n t  par 1/ 2 ( , )n K n t  pourrait être analogue à celui obtenu 
pour ,n  à savoir en 1/ 2 2(log ) .n n  Mon résultat de [129] infirme cette conjecture. Plus 
récemment (dans [134]), j'ai pu montrer, en fait, que la vitesse d'approximation obtenue par 
Csörgő et Révész (1975,1976) était optimale, en apportant une solution finale à ce problème, 
resté ouvert depuis 1975. Mon résultat montre l'existence d'une constante positive C, 
comprise entre 1/ 41/11  et  2 ,  et telle que, quel que soit le processus de Kiefer K considéré, 
on ait 

    1/ 2 1/ 41/ 4 1/ 2lim sup log loglog ( ) ( , ) C   p.s.n
n

n n n t n K n t  


   

Plus récemment, dans [142], j'ai montré qu'on pouvait approximer le processus empirique des 
quantiles avec une vitesse d'approximation d'ordre 1/ 2n  , pour 0  arbitraire, à l'aide de 
processus de Kiefer itérés. Dans [133] et [139], je décris le comportement local du processus 
des quantiles pour des accroissements d'ordre 1log .nh cn n  
 
4.e.d. Espacements. 
 
Soit X = X1,...,Xn un échantillon de taille n d'une loi de probabilité réelle, dont les statistiques 
d'ordre sont notées 
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X1,n ≤ ... ≤ Xn,n. 
 
L'étude des espacements Xi+1,n-Xi,n, i=1,...,n-1 associés (qui peuvent aussi être interprétés 
comme les accroissements d'ordre 1/n de la fonction de quantile empirique de l'échantillon), a 
été développée dans mes articles [31], [32], [41], [44], [45], [56], [57], [61], [75] 
essentiellement de 1981 à 1988, puis, à nouveau en 2003, dans [148]. 
 
Mes travaux ont porté tout d'abord sur les espacements maximaux 

Mn = max{1≤ i<n}{Xi+1,n - Xi,n}, 
dans le cas de lois uniformes, ainsi que dans le cas de lois plus générales. En particulier, j'ai 
obtenu des encadrements asymptotiques presque sûrs pour Mn et d'autres statistiques 
analogues, ainsi que plusieurs théorèmes limites en loi décrivant le comportement de ces 
suites aléatoires. Par exemple, dans [61], j'ai établi que, si la loi de X  a une densité f, continue 
et positive sur [0, ) et nulle sur  ,0 ,  et si, lorsque n      , le maximum Xn,n de X1,...,Xn est 

tel que a 1
n (Xn,n  - bn) converge en loi vers une loi de Gumbel}, de fonction de répartition exp(-

e-x), alors 

   1

1

lim 1    pour   0.kx
n nn

k

a M x e x


 




     

 
4.f. Statistiques actuarielles - Statistiques des queues de distributions. 
 
4.f.a. Estimation de l’index de Pareto. 
 
Une variable aléatoire Y  est dite (cf. [54]) d'index de Pareto λ > 0, si 
 

P(Y > y) = y-1/λ L(y), 
 

où L(.) est une fonction à variation lente à l'infini, c'est à dire, telle que pour tout choix de c>0, 
L(cy)/L(y) 1 lorsque y    . 
 
Ce type de loi est souvent associé à des phénomènes physiques, qui se rencontrent 
typiquement en assurance, dans le cas de grands sinistres. Il est également présent dans de 
nombreux exemples industriels (corrosion), ou naturels (météorologie). Il est donc utile 
d'estimer le paramètre λ à partir d'échantillons observés, selon le schéma suivant. 
 
Soit une suite Y1,Y2,..., de variables aléatoires indépendantes de même loi d'index de Pareto 
λ>0. Désignons par Y1,n ≤ ... ≤ Yn,n la statistique d'ordre de Y1,...,Yn. Pour estimer λ, Hill (1975) a 
introduit l'estimateur 

λ *
n = 

nk

1  


nk

i 1

(log Yn-i+1,n - log Yn-i,n ), 

 où {kn : n   1} désigne une suite de constantes entières telles que 
1 ≤ kn < n,  kn   , et n-1 kn   0. 

J'ai établi dans [76],  en 1988 (avec D. M. Mason et E. Haeusler), qu'une condition nécessaire et 
suffisante pour que λ *

n   λ  p.s.  lorsque n     est que 
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kn / loglog n    . 
En 1985, j'ai introduit, dans [55] (avec S. Csörgő et D. M. Mason), un estimateur, comprenant 
l'estimateur de Hill comme cas particulier, et défini par 

 
1

1, ,
1 1

1
log log ,

k kk k
G
n n j n n j n

j jn k n k

j j j
K K Y Y

k k k k




  
 

      
                
   

où le "noyau" {K(t) : t  0} est une fonction, vérifiant des propriétés de régularité convenables 
(comme celle d'être nulle en dehors d'un intervalle compact de  , et d'être à variation 
bornée), ainsi que: 




0
K(t)dt = 1  et  



0
K2(t)dt <  . 

J'ai établi dans [55] diverses propriétés de cet estimateur, dont des conditions impliquant sa 
normalité asymptotique et sa convergence en probabilité. De plus, j'ai déterminé des choix 
asymptotiquement optimaux du noyau K et de la suite kn permettant de choisir ces facteurs 
dans les applications pratiques. J'ai également montré que l'estimateur de Hill ne permettait 
généralement pas d'obtenir une vitesse de convergence optimale en moyenne quadratique 
realtivement à l'ensemble des estimateurs issus de cette famille élargie. 
 
 
4.f.b. Sommes d'extrêmes, coefficient d'ajustement en théorie du risque 
 
Il s'agit d'étudier le comportement limite d'expressions de la forme 

1,
1

( ) ,
nk

n n n i n
i

S k Y  


  

où 1, ,...n n nY Y   désigne la statistique ordonnée des n premières observations 1,..., nY Y  d'une 
suite de variables aléatoires indépendantes de même loi. Ce type de problème a des 
applications naturelles pour l'étude des sommes de grands sinistres en théorie actuarielle. Il 
présente aussi un grand intérêt théorique dans le cadre de l'étude des statistiques censurées 
et tronquées. Enfin, nous mentionnerons plus loin une application obtenue pour l'estimation 
du coefficient d'ajustement en théorie du risque. 
 
Mes contributions dans ce domaine  ont débuté par les articles, [72] et [87], consacrés au cas 
où le maximum  , 1max ,...,n n nY Y Y  est dans le domaine d'attraction de la loi de Gumbel. On 
suppose, dans ce cas, qu'il existe des constantes 0 et n na b  telles que, lorsque ,n   

    1
, exp   pour tout  .x

n n n na Y b x e x        

Dans ces travaux, j'ai montré (avec D. M. Mason et E. Haeusler) qu'on pouvait se ramener 
essentiellement au cas où la loi des iY  est exponentielle pour 1,2,...,i   c'est à dire, telle que 

  t
iY t e   pour 0.t   Un exemple surprenant des résultats ainsi obtenus est le suivant. 

Supposons que  / loglog 0, .nk n c    Alors, on a, presque sûrement, 

 1,
1

1 2 2
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La constante bizarre trouvée dans le membre de droite de cette expression a pu être 
expliquée par mon article [96] de 1989 (avec D. M. Mason). J'y ai montré que toute une série 
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de lois limites du calcul des probabilités pouvaient être obtenues comme conséquences de 
lois fonctionnelles du logarithme itéré. Dans l'exemple présent, on raisonne comme suit. Tout 
d'abord, on établit ([91]) que la suite de fonctions définie par 

( )    pour  0 1,
loglog 

n
n n

k sn
g s G s

n n
    
 

 

où ( )nG t  désigne la fonction empirique de quantiles uniforme (voir le5 ci-dessus), est presque 
sûrement relativement compacte pour la topologie faible des fonctions de répartition de 
mesures positives. Cette suite a comme ensemble limite l'ensemble, noté ( ),c  de toutes les 
fonctions de répartition ( ),g s  de mesures positives sur [0,1], ayant une composante singulière 

( ),Sg s et une composante absolûment continue 
0

'( ) ,
s
g t dt  telles que 

  1 1

0
( ) : (0) 0,  (1 ) '( ) 1 ,Sc g g g c c g u du        

où ( ) 1 log   pour  0.u u u u     Ensuite, on vérifie que 
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Il suffit alors de constater que 
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pour retrouver la conclusion de [96] citée ci-dessus. Ce genre de résultat explique 
naturellement la génération de constantes inhabituelles dans les théorèmes limites, à partir de 
la solution de certains problèmes de calculs d'extrema dans des espaces fonctionnels, rentrant 
dans la catégorie générale des espaces d'Orlicz. 
 
Le coefficient d'ajustement en théorie du risque est défini comme le plus grand nombre 0a   
tel que la probabilité de ruine d'une compagnie d'assurance ayant un capital initial égal à t soit 
uniformément bornée supérieurement par une expression de la forme  exp ,C at  où C 

désigne une constante convenable. Dans l'article [92] (en collaboration avec J. Steinebach), j'ai 
introduit (et étudié les propriétés de convergence correspondantes à) des estimateurs de ce 
coefficient d'ajustement basés sur les fluctuations négatives du processus de risque. Ces 
estimateurs s'apparentent à des sommes pondérées de valeurs extrêmes, et sont aujourd'hui 
couramment utilisés, entre autres, pour valider des modèles paramétriques sur la loi des 
sinistres. 
 
4.f.c. Approximation forte du processus de risque. 
 
Le processus de risque actuariel est défini par 

( )

1

( ) ,
N t

i
i

S t Y


   

où  : 1iY i   désigne la suite des coûts de sinistres, et ( )N t  représente le nombre de sinistres 

observés dans l'intervalle de temps  0, .t  On suppose ici que le èmen  sinistre survenient à 

l'instant 1 ... .nX X   On suppose que    : 1  et : 1i iX i Y i   sont deux suites 
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indépendantes, chacune d'entre elles étant composée de variables aléatoires indépendantes 
de même loi, ayant une fonction génératrice des moments finie au voisinage de l'origine. On 
pose 

       2 2
1 1 1 1,   ,   Var ,   Var .X m Y X s Y       

En 1987, dans [71], j'ai prouvé (avec M.Csörgő et L.Horváth), qu'il existe un espace de 
probabilité supportant à la fois le processus  ( ) : 0 ,S t t   et un processus de Wiener 

standard  ( ) : 0 ,W t t   de telle mani\`ere que, pour 0 et 0,x T   on ait l'inégalité 
1/ 22 2 2 2

3
0
sup ( ) ( )  log ,Cx

t T

m s
S t t W t x A T Be

m m

   

 

           
  

pour des 0,  0,  0A B C   convenables. 
 
Des résultats analogues sont obtenus lorsque 1X  et 1Y  possèdent seulement des moments 
d'ordre 2.r   Ces travaux comprennent, comme cas particuliers, les approximations fortes de 
Komlós, Major et Tusnády (1975,1976) (en prenant les iX  constants), et ceux de Mason et 
Van Zwet (1987) (en prenant les iY  constants). De plus, ils permettent diverses applications 
actuarielles, ainsi que dans la théorie des files d'attente. L'approximation du processus de 
risque par un processus de Wiener permet de simplifier considérablement certaines analyses 
du risque actuariel lié aux fluctuations de ce processus. On ne peut en effet, sauf exception, 
décrire ce dernier par des calculs exacts, que le cas où le processus d'arrivée des sinistres est 
un processus de Poisson, ce qui est, en général, très sensiblement différent de la réalité 
observée. 
 
4.g. Lois fonctionnelles et théorèmes du type Strassen. 
 
Soit  ( ) : 0W t t   un processus de Wiener standard. La loi fonctionnelle du logarithme itéré 

de Strassen (1964) établit que, si, 3,T   
( )

( )   pour  0 1,
2  loglog 

T

W Ts
f s s

T T
    

alors, pour toute suite 13 ... ...,nT T    avec ,nT   la suite  (.) : 1
nTf n   est presque 

sûrement relativement compacte dans l'ensemble  0,1C  des fonctions continues sur  0,1 ,  
muni de la topologie de la convergence uniforme, et que l'ensemble limite, composé des 
limites de toutes les sous-suites convergentes de  (.) : 1

nTf n  , est presque sûrement égal à 

 1 2

0 0
: ( ) ( ) ,  0 1,  ( ) 1 .

t
f f t u du t u du        

Dans un travail récent, en collaboration avec M. Lifshits, j'ai établi ([114], [118]) des conditions 
nécessaires et suffisantes portant sur une semi-norme    générale (pouvant prendre des 

valeurs infinies) sur  0,1C  pour que le résultat ci-dessus reste vrai pour la topologie définie 

par    . Ces résultats apportent une solution complète à un problème posé 1964, et abordé, 

entre autres, par Lerche (1992) et Baldi, Ben Arous et Kerkyacharian (1992), pour des normes 
particulières (telle que la norme de Hölder). 
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Dans [113], en collaboration avec P.Révész, j'ai décrit le comportement limite de la suite 
d'ensembles aléatoires 

 
( )

: 0 1,  1,..., ,
2 log loglog 

i
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W Ts
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


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où  : 0T T   est une fonction monotone de T. Ces résultats ont des applications 
nombreuses, et sont liés à des travaux analogues sur les sommes partielles dans les tableaux de 
variables aléatoires ([122], [123]), et les incréments de processus empiriques ([108]). 
 
4.h. Objets fractals aléatoires. 
 
Dans plusieurs articles récents ([116], [121], [127], [128], [132]), écrits, pour  partie, en 
collaboration avec D. M. Mason et M. A. Lifshits, j'ai entrepris l'étude des objets fractals 
aléatoires engendrés par les oscillations de divers processus, tels que le processus empirique, 
le processus des quantiles, le processus de Wiener, etc. Voici un exemple de ces résultats. Soit 
une suite de constantes positives  : 1 ,nh n   vérifiant 

  0 1,    0,    ,    / log ,    log 1/ / loglog .n n n n nh h nh nh n h n        

On considère les ensembles aléatoires  définis par 
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Alors, avec probabilité 1 pour tout  0,1 ,  l'ensemble ( )D   est partout dense dans  0,1  

et de dimension de Hausdorff égale à 21 .  
 
De nombreuses extensions de ces résultats sont données dans [116], [121], [130], comme, par 
exemple, des raffinements de résultats dûs à  Orey et Taylor (1974) sur le processus de 
Wiener. Plus récemment, j'ai obtenu dans [132] (avec D. M. Mason) une version nouvelle de la 
loi de Chung pour le processus de Wiener. Celle-ci est décrite en introduisant une nouvelle 
famille d'objets fractals aléatoires gengendrés par les points exceptionnels du processus de 
Wiener. Dans [127], avec M. A. Lifshits, j'ai montré que ces résultats étaient valables sous 
forme fonctionnelle, indépendamment de la norme utilisée, pourvu que celle-ci demeure 
compatible avec la loi du logarithme itéré pour le processus de Wiener. 
 
4.i. Statistique appliquée et industrielle. 
 
A côté des travaux de statistique théorique ayant fait l'objet de publications dans des journaux 
scientifiques et évoqués ci-dessus une partie importante de mes travaux concerne la 
statistique appliquée. Au-delà des articles [25], [46], [98], [102], [111], [119], [140], ont trait 
à quelques unes de ces recherches, la majeure partie de celles-ci a fait l'objet de rapports 
internes et de notes techniques au sein des organismes où ils ont été effectués, principalement 
des compagnies pétrolières (Compagnie Française des Pétroles, TOTAL, ELF) et 
phamaceutiques (ELF-SANOFI, SANOFI-SYNTHELABO, SANOFI-AVENTIS). Compte tenu de 
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leur importance industrielle, ces travaux sont pour l'essentiel du ressort de la confidentialité, et 
je n'en mentionnerai que quelques exemples significatifs. 
 
Un résultat ayant fait l'objet de publication partielle ([98], [111]) concerne l'industrie 
pétrolière dans le cadre de la modélisation et du contrôle des écoulements diphasiques. 
Schématiquement, si on pompe dans un pipe-line un mélange de gaz et de liquide, il peut se 
former  des bouchons liquides en alternance avec des bulles gazeuses. Il est alors important de 
pouvoir disposer de modèles fiables permettant de décrire la longueur des bouchons dans un 
écoulement stationnaire. Dans des travaux, en collaboration avec M. Bernicot et H. Dhulesia 
([121]), puis avec M. Bernicot ([119]), j'ai pu établir que cette loi était bien représentée, 
suivant les circonstances, soit par des modèles gaussiens inverses, soit par des modèles demi-
normaux. La loi gaussienne inverse n'est rien d'autre que la distribution du premier temps de 
passage d'un processus de Wiener avec dérive, de la forme ( )t W t   (avec 0  ) à un 
niveau donné 0a  . Cette loi a une densité donnée par 
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a ta
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Une analyse statistique, comprenant l'ajustement des paramètres et la comparaison avec 
d'autres familles de distributions possibles, d'un grand nombre d'observations expérimentales 
de systèmes déjà installés (notamment en Indonésie), ainsi qu'une modélisation théorique du 
phénomène ont permis de mettre en évidence et d'interpréter la génération de ces lois. Ces 
recherches contribuent à la prédiction de la taille des bouchons apparaissant à la sortie des 
pipe-lines. Les caractéristiques de ces derniers doivent être convenablement évaluées pour 
concevoir une bonne gestion des installations. 
 
 
Un autre exemple de recherche appliquée est la mise au point de protocoles expérimentaux 
pour l'analyse de données pharmaceutiques. Dans [146], en collaboration avec G. Derzko, j'ai 
répertorié une famille de plans d'expérience en blocs incomplets équilibrés optimaux dans le 
cas de liaisons temporelles. Ces plans sont utilisés pour la comparaison de nouveaux 
médicaments en milieu hospitalier, notamment par ELF-SANOFI. Dans le même champ de 
recherche, j'effectue des analyses de durées de survie en données censurées par des 
méthodes inspirées par les articles [89],  [109] et  [125]. 
 
Ces activités de statistique appliquée ont le double objet de motiver mes recherches de 
statistique fondamentale par l'observation in situ des problèmes théoriques posés par la 
pratique permanente du traitement des données, et inversement de pouvoir mettre en 
oeuvre en industrie des résultats issus de la recherche théorique, par l'intermédiaire de 
stagiaires (DEA, ISUP, etc.) issus des formations d'enseignement auxquelles je participe, et dont 
l'insertion en milieu professionnel est favorisée par ces relations. 
 
Dans la cadre de ces applications, j'ai travaillé récemment, avec D. M. Mason et G. Shorack sur 
le bootstrap. Dans [110], nous avons caractérisé les cas où les bootstraps des extrêmes, de 
sommes d'extrêmes, de statistiques tronquées et de la moyenne, étaient convergents. Ces 
recherches, de nature théorique, sont associées à des applications industrielles. 
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Plus récemment, j’ai coordonné un contrat d’assistance technique pour la Commission 
Européenne (en 2002-2003). Le rapport correspondant a été rendu disponible sur internet 
sur les sites web : 

http://europa.eu.int/comm/consumers/cons_safe/news/prod_saf_fr.pdf 
et  

http://europa.eu.int/comm/consumers/cons_safe/news/prod_saf_en.pdf 
 
Mes activités d’expertise sur la sécurité des produits et sur la comparaison des protocoles de 
mesure ont donné lieu à de nombreux rapports d’expertise, notamment, auprès de la 
DGCCRF, et de plusieurs organismes internationaux (sécurité des mesures d’incendie en 
Grande Bretagne). 
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18-19 mars      Alfred Rényi Memorial Conference, Budapest  
23-26 avril       Fifth International Symposium on Applied Stochastic Models and Data  
                        Analysis, Granada, Espagne 
4-8 mai            International Symposium on Nonparametric Statistics and Related Topics,  
                        Ottawa 
27-30 mai        èmesXXIII  Journées de Statistique, ASU, Strasbourg 
19--21 juin      th5  International Conference on Multiphase Production, Cannes  

1992: 
18-22 mai        èmesXXIV  Journées de Statistique, U.L.B., Bruxelles, Belgique 
18-20 nov.       èmesXIII  Rencontres Franco-Belges Statisticiens, Villeneuve d'Ascq, 
                        Résultats Nouveaux en Théorie des Valeurs Extrêmes et Applications 

1993: 
25 avril-2 mai Geometria Stocastica, Corpi Convessi, Misure Empiriche, Palerme, Italie  
2-7 mai            Conference on Extreme Values Theory and its Applications, Gaithersburg,  
                        USA 
16-18 juin       th6  International Conference on Multiphase Production, Cannes, France 
1-5 août           Distributions with Fixed Marginals, Doubly Stochastic Measures and  
                        Markov Operators, Seattle, USA 
16-21 août       th9 Conference on Probability in Banach Spaces, Sandbjerg, Danemark 

1994: 
24-27 mai        èmesXXVI Journées de Statistique, ASU, Neuchâtel, Suisse 
8-9 juin            Scientific Session at the Mathematical Institute of the Hungarian  
                        Academy of  Sciences in celebration of Pál Révész's th60  birthday,  
                        Budapest, Hongrie 
26-28 mai        Multivariate Extreme Value Estimation with Applications in Economics  
                        and Finance, Rotterdam, Pays Bas 

1995: 
11-13 sept.      IFU-Workshop 1995, Weimar, Allemagne 
18-24 sept.     COPAM 95, Fourth AMU Pan-African Congress of Mathematicians, Ifrane. 

1996:  
26-31 août      th4 World Congress of the Bernoulli Society, Vienne, Autriche 
8-9 sept.          Seconda Conferenze Internazionale, Geometrica Stocastica Corpi  
                        Convessi, Misure Empiriche, Agrigento, Sicile 
21-22 nov.      èmeXXVII  Rencontre Franco-Belge de Statisticiens, Marne-la-Vallée 

1997 
26-30 mai       èmesXXIX  Journées de Statistique, Caracassonne 
8-13 juillet      ICAMPS'97, International Conference on Asymptotic Methods in  
                       Probability and Statistics, Ottawa, Canada. 
10-13 sep.      oXXI  Convegno Annuale A.M.A.S.E.S., Rome, Italie. 
17-20 sep.      IFU--Workshop 1997, Istanbul, Turquie 
13--24 oct.     Symposium on Nonparametric Functional Estimation. Centre de Recherches  
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                       Mathématiques, CRM, Université de Montréal, Canada 
1998: 

13-24 juillet   Random Walks - Workshop and Summer School,  Paul Erdős Research  
                       Center for Mathematical Sciences, Budapest. 
20-22 août     Perspectives in Modern Statistical Inference, Parametrics, Semiparametrics,  
                      Nonparametrics, Prague. 

1999: 
28 juin-2 juil.  Fourth Hungarian Colloquium on Limit Theorems in Probability and  
                       Statistics (J. Bolyai Mathematical Society), Balatonlelle, Hongrie. 
22-24 oct.       Statistical Models: Probabilistic Background and Inference, Cagliari, Italie. 

2000: 
20-25 mars     Hamburg Stochastik Tage, Hamburg, Allemagne. 
15-21 mai       th5 World Congress of the Bernoulli Society, Guanajuato, Mexique. 
29-31 mai      International Workshop on Goodness-of-fit Tests and Validity of Models,  
                      Paris. 
4-7 juillet      Mathematical Methods in Reliability: Methodology, Practice and Inference    

                            (MMR-2000), Bordeaux. 
2001: 

14-18 mai      èmes33 Journées de Statistique, Nantes 
19-20 mai       Colloquium in Honor of George Roussas, Davis, California 
24-29 sep.      thIV  International Conference in Stochastic, Geometry, Convex Bodies,  
                       Empirical measures and Applications, Tropea, Italie. 
7-9 déc.         Characterizations, Modelling and Applications, Antalya, Turquie.  

2002: 
15-23 mai      èmes34  Journées de Statistique, Bruxelles 
17-22 juin      Mathematical Methods in Reliability 2002, Trondheim, Norvège 
24-28 juin      The rd3  International Conference on High Dimensional Probability,  
                       Sandbjerg Estate, Danemark 
14-17 août      Perspectives in Modern Statistical Inference II, Brno, République Tchèque 

2004 : 
17-19 juin      Conference in Honour of Endre Csáki, Budapest. 

2005 : 
17-25 mai       Applied Stochastic Models and Data Analysis, Brest. 
20-24 juin       The th4  International Conference on High Dimensional Probability, Santa 
        Fe, New Mexico. 
14-15 octobre Conference in Honour of Wolfgang Wertz, Vienne 

2006: 
15-20 mai      IWAP International Workshop in Applied Probability (Storrs, Connecticutt) 
22-28 mai     37èmes Journées de Statistique, Paris. 

 
7. Compléments personnels 
- Famille : 
Marié le 4 mars 1971 (civ.) &19 mars 1971 (rel.) avec Joële Cormerais 
Quatre enfants: 
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Fleur   née le 19 juillet 1972 
Sophie      née le 11 décembre 1975 
Camille    née le 16 décembre 1979 
Aurore      née le 22 avril 1987 
- Loisirs : 
Escalade rocheuse, pyrénéisme. 


