Teach teachers to teach about Nature of Science (NoS)

Professor Cliona Murphy
Institute of Education
Dublin City University
Ireland
Two Teacher Education Initiatives in Ireland

- 50 Student & 50 practising primary school teachers
- NoS pedagogy
- 15 hours CPD
- Coteaching

NoS Continuing Professional Development (CPD) Programme (2010 - 2013) (Fibonacci Project)
- 20 Primary school teachers
- NoS pedagogy
- 80 hours CPD (2 yrs)
- Framework for effective CPD
What is Nature of Science (NoS)?

A knowledge about

- What science is and how it works
- How scientists work as a social group
- How science and society are affected by one another
- The history of ideas in science and their impact on society today

The way one understands science

Science as a way of knowing (epistemology)
NoS in Primary School Context

No one definition – embraces many characteristics

- Science is a **reliable body of knowledge** that provides information and explanations about the world.

- There is **no one universal scientific method** to which all scientists rigidly adhere.

- Science is a **human activity** encompassing subjectivity, creativity and imagination.

- **Science and society** have impacted scientific development in the past and science and society are influenced and affected by one another in contemporary society

 (Abd-El-Khalick & Lederman, 1998; Akerson & Hanuscin, 2003; Murphy et al., 2015)
Why teach about NoS?

- Makes science relevant and interesting
- More opportunities for active engagement in genuine scientific inquiry
- Creativity and innovation in science
- Children more opportunities for reflection
- Links everyday science with school science making science more relevant to children
- Teachers more confident & enthusiastic about teaching science
- Teachers use more IBSE approaches to science (which is good!!)

(Akerson & Haunuscin, 2003; Driver et al., 1996; Murphy et al. 2011; 2015; Lederman & Lederman, 2014)
NoS Pedagogy

Activities ABOUT Science

Activities IN Science
Aims: To provide student and practising teachers with opportunities to:

- Develop their **PCK of NoS**
- Develop expertise in teaching science
- Use **co-teaching** to teach about NoS

Murphy and Beggs (2008) Model of Coteaching
Overview of BEST Project

• NoS Elective course

• 2 professional development (PD) days
 – University (DCU)
 – Student and practising teachers

• 4 week co-teaching period
 – 4 science lessons in schools

• Review day (DCU)
Findings

Student and practising teachers:
• Enjoyable and worthwhile
• More confident teaching science
• Sharing ideas / expertise
• Employed wider range of methodologies
• Providing children more opportunities for
 – Skill development
 – Inquiry
 – Questioning
 – Collaborating
 – Problem solving
 – Reflection
 – Discussion
Fibonacci Project in Ireland

- **What:** 2 year CPD programme (80 hrs)

- **Aim:** Develop Irish primary teachers’ PCK in NoS & IBSE

- **How?**
 Inquiry-based approaches to teaching about NoS
 Innovative Professional Development Model (Desimone, 2009)

- **Who?**
 20 teachers (10 Dublin schools)
 - Range of experience
 - All non-science experts

 450 pupils from 20 primary classes (8 – 12 years)
Overview of the CPD

Workshops
After school (6pm – 9m)
Introduction to IBSE & NoS pedagogy
Relevant to Irish Primary Science Curriculum

Virtual learning environment
Teachers adapting and developing resources

School Visits
- Observing pupils
- Teaching
- Coteaching

Teacher led workshops
- Whole school CPD
Evaluation

Sample
- 20 teachers
- 442 children (8 - 12 years)

Data Collection

Surveys
- 20 initial and exit teachers’ questionnaires
- 438 initial and 442 exit children’s questionnaires

Interviews
- 10 teachers (post CPD)
- 10 focus group interviews (1 class from each school) prior to and after CPD

Teachers’ reflective diaries
- 11 of the 20 teachers completed diaries for the full 2 years

Data Analysis
- Questionnaire data SPSS
- Interview & reflective journals data coded and categorised – inter-rater reliability established
FINDINGS

Teachers
- Positive reaction to PD
- Evidence of learning
- Increased competence and confidence in teaching science
- Organisational support critical
- Change in Practice

Children
- Positive impact on children’s experiences and learning of science in school
- More frequent engagement with IBSE
- Developed conceptual understanding of NoS
What have we learned?

• **NoS pedagogy in primary classroom**
 – Numerous positive impacts on teaching and learning in primary science
 – NoS should be taught in primary schools

• **CPD Essential**
 – Move away from ‘one size fits’ all model
 – Framework for effective CPD

• **Coteaching**
 – Positive impacts on teaching of and learning in primary science
 – Useful pedagogy for teaching science
References

• Murphy, C., Broderick, N. & Kenny L. (2014). Real Science for Young Scientists. St Patrick’s College, Dublin.

• Murphy, C., Smith, G. and Varley, J. (2012). Developing an understanding of the nature of science investigations. In T. Jarvis (Ed.), Integrating science inquiry across the curriculum, pp. 9-12. Publisher: Fibonacci Project Partners