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In this talk, we present a mathematical model in the form of three differential equations which describe dynamics of aquatic plants, grazers and predators 
fishes populations in the absence and presence of fishing fleets. We introduce two controls variables to discuss the impact of optimal fishing effort on the 
environmental sustainability and bioeconomy.
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The hydraulic food chain differential system with harvesting is modeled using the 

following ordinary equations:

OPTIMAL FISHING EFFORT
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with v(0)=v0, x(0)=x0 and y(0)=y0 as given initial conditions and where

- r>0 is the intrinsic growth rate of the vegetation in the absence of the grazers,

- k>0 is the vegetation carrying capacity,

- m is nongrazing mortality of vegetation,

- m1 and m2 are the natural mortality rates of vegetation, grazers and predators respectively,

- �, �, � and � represent the efficiency by which a marine fish specimen is converted to an

other one,

- functions h1(x(t)), h2(y(t)) are non-negative and represent the harvesting of grazers and

predators respectively;

we note that h1(x(t))= q1 e1(t) (x(t)) and h2(y(t))=q2 e2(t) (y(t)) with q1 , q2 are the catchability

coefficients, and e1(t) , e2(t) are the fishing effort associated to x and y state variables 

respectively.
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We seek two optimal control functions e1* and e2* satisfying:
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Theorem  (Necessary conditions and Characterization)

Given two optimal controls e1* and e2*, along with solutions v*, x* and y* of the 

corresponding state system, there exist adjoint variables  �1, �2 and �3 satisfying :
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Our main goal is to suggest an optimal harvesting policy, which concerns the maximization
of the harvesting functions h1(x(t)) and h2(y(t)) while minimizing the fishing effort functions

e1(t) and e2(t), related to the following objective function J :
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In this talk, we devised a mathematical model which describes dynamics of a food chain composed by three different marine species; the aquatic plants, grazers and predators. We

suggested two optimal harvesting policies. Based on the optimal control theory, we considered a first optimal harvesting policy for the environmental sustainability case, and which has

aimed to minimize two fishing efforts functions related to grazer and predator states variables respectively for not affecting the trophic-halieutic environment, while finding the possibility to

maximize their associated harvesting functions during fishing fleets, for the benefice of fishermen. As regards to the second optimal harvesting policy proposed for the bioeconomic case, it

has aimed to minimize the two same fishing efforts functions but focusing only on the maximization of their associated profits functions, as an example of the effectiveness of the optimal

harvesting strategy in the bioeconomy case.
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The incorporation of economic considerations into resource harvesting models

leads to the subject called bioeconomics.
we introduce the two same control functions e1 and e2 but associated in this

case, to profits functions �1(e1) and �2(e2) respectively.
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For this, we propose an optimization criterion subject to system which is
defined by the following objective function J:

( ) ( )[ ]

 rate.discount  annual  theis  where

   e),(  max

0

2211
 t-

21

θ

θ dteeeeJ �
∞

Π+Π=

Explicity, J is defined as

( ) ( ) ( ) ( )[ ]dttectectyteptxtepeeJ    )( q)( q e),( 

0

2211222111
 t-

21 �
∞

−−+=
θ

Therefore, the main goal, concerns the characterization of the two sought
optimal controls e1* and e2*  such that
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Similarly, we can easily prove the existence of an optimal control pair
e = (e1 ,e2) satisfying the condition of maximum. In the following, we announce 

the theorem of necessary conditions and characterization associated to the 

bioeconomic case.

Theorem

Given two optimal controls e1* and e2* and solutions v*, x* and y* of the 

corresponding state system, there exist adjoint variables  �1, �2 and �3 defined 

by
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1st case 2nd case

with the transversality conditions
which imply that e1* and e2* are defined by the following analytical formulations
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Introduction 
    An interesting and attractive topic in population ecology is understanding the diversity and community 
composition of populations that ultimately determine the overall stability of an ecosystem.  In this work, 
we consider a tri-trophic prey-predator model which consists of three constituent populations; i.e., prey, 
middle predator and top predator. The objective of this work is to show how changes in the price can 
affect the profits of fishermen which exploit these three marine species. To achieve this aim we define a 
bioeconomic equilibrium model of this three populations then we compute the generalized Nash 
equilibrium point. 
 

   Problematic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematics for economic progress and ecological balance 
   In this work, we have treated a tri-trophic fishing model, namely the top-predator population that 
predominates both on the middle-predator populations and the prey. We adopted the approach according 
to which each fisherman can maximize these benefits to the biological equilibrium, depending on the 
fishing effort devoted to these marine species. From this study, this problem generates a generalized 
problem of Nash equilibrium, Which produces a transformation into a problem of linear complementarity 
in order to solve the problem. A numerical example verifying our theoretical results is also included. 

                    Results and discussions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The influence of price on the profit of fishermen exploiting 

prey, middle-predator and top-predator fish populations  
M. BENTOUNSI, I. AGMOUR, N. ACHTAICH and Y. EL FOUTAYENI   

meriem.bentounsi@gmail.com   
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Bioeconomic model 

Let !", !# and !$ respectively denoted the prey, middle predator and top predator populations 
sizes.  The resulting system of equations reads as follows:
 
 

 
 
 
 
 

Nash Equilibrium Problem (NEP) 
 

Le premier pêcheur doit résoudre (P1) 
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The influence of the number of the price 

According to tables 2, one can remark that an increase in the price leads to an increase in fishing 
effort, catches and profit. But it is clear that when the price level increases significantly, ie when it 
varies in a large amplitude interval, the fishing effort and the catches increase by varying in an 

interval of small amplitude. More precisely, when the price is between 1 and 1090, the fishing effort 
varies between 16,51 and 17,68, and the catches vary between 234,4 and 246,7. This is justified by 
the need for conservation of marine species even if the price increases significantly.  
One can see that the level of profit increases, which allows fishermen to have highest returns 
through more reasonable catches, taking into account the conservation of biodiversity. 
These results allow us to deduce that our model is pertinent since it allows us to determine the 
fishing effort that maximizes the profit of each fisherman without being obliged to make more 
catches that lead to the overexploitation of these marine species. 
Let us add that when the price tends to infinity, the fishing efforts of the two fishermen are equal 

and they do not exceed 18, as well as the catches which do not exceed 250, contrariwise the profit, 
is always increasing thanks to the increase of the price. Then we can deduce the effect of the price 
change on the 
fishing effort, catches and profit.  
It is very interesting to note that if the price tends to infinity and the fishing effort is superior than 

18, then the catches and the profit decrease.  

Solution of LCP:  

The solution of the linear complementarity problem LCP(M,b)  is the vector   %& = ('1
&, '2

&, 0)* 

 

 

 

 

Solution of NEP ‘’Fishing effort’’:  
The solution of the Nash equilibrium problem is the point ('1

&, '2
&)* 
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The problem of determining the fishing effort that maximizes the profit of each fisherman leads 
to a Nash equilibrium problem.  

The first fisherman must solve the problem (P1) 
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The second fisherman must solve the problem (P2) 
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Definition 

The point ('", '#)  is called Nash equilibrium point if and only if '" is a solution of problem 

(P1) for '# given, and '# is solution of problem (P2) for '" given.  

The essential conditions of Karush-Kuhn-Tucker applied to (P1) 
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The essential conditions of Karush-Kuhn-Tucker applied to (P2) 
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Linear Complementarity Problem (LCP) 

Find vectors %, + - ./3 such that: 
 
 
 
 
 
 
 
 
 

ï
î

ï
í

ì

=

³

³+=

0

0,

0

wz

wz

bMzw

T

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-

-

=

÷
÷
÷
÷

ø

ö

ç
ç
ç
ç

è

æ

=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

--

=

÷
÷
÷
÷

ø

ö

ç
ç
ç
ç

è

æ

=
*

*

*

0

2

0

1

2

1

00

00
2

1

    ,

0

    ,

0

02

2

    ,

0

  with      

X

qXPc

qXPc

bE

E

z

AA

qAPqAP

AqAPqAP

Mu

u

w

T

Now, we take as case of study two fishermen who catch the three fish species. In order to assure 
the existence and stability of the locally asymptotically stable state of the three fish 
populations we consider the parameters of the model system as  
 
 
 
 
 
 
 
 
 
 

Prey Middle-predator Top-predator 

r4=0,5 r5=0,3 r6=0,2 

α=2.1078 9:=107; <>=1078 

β=3.1078 δ=2.107; ?>=1078 

q4=0,1 q5=0,02 q6=0,004 

P4=1 P5=2 P6=3 

c4=0,1 c4=0,1 c4=0,1 

c5=0,2 c5=0,2 c5=0,2 

P4 P5 P6 '" '# @" @# A" A# 

1 2 3 17,0451 16,5151 245,0957 234,4651 282 269 

16 27 48 17,6383 17,6073 246,5725 246,2429 4513 4500 

51 70 108 17,6627 17,6492 246,6552 246,5718 13584 13567 

106 133 327 17,6749 17,6702 246,6923 246,6334 29111 29099 

808 811 914 17,6794 17,6778 246,7095 246,6775 200558 200531 

1000 1079 1090 17,6797 17,6784 246,7107 246,6839 249295 249266 

Table 2. The influence of the price on the fishing effort, catches and profits. 

r
1 

 : The intrinsic growth rate of the prey. 
r

2
  : The intrinsic growth rate of the middle-predator. 

r
3
  : The intrinsic growth rate of the top-predator. 

α: Capture rate of the prey by predator. 
β: Capture rate of the prey by top-predator.. 
9:: The middle-predators’ assimilation rates for competition with 
prey. 

δ: Mortality rate of middle predator by top-predator. 

<>: The top predators’ assimilation rates for compitition with prey. 

?>: The top predators’ assimilation rates for compition with middle-
predator. 

BC = DC'C!C : The total catches of fish population i. 
'C: The fishing efforts to exploit a species j . 
DC : The catchability coefficients of species j . 

Table 1. Characteristics of fish populations. 




